
SOFTWARE ARCHITECTURE AND DESIGN PATTERNS

(Effective from the academic year 2018 -2019)

SEMESTER – VII
Course Code 18CS731 CIE Marks 40
Number of Contact Hours/Week 3:0:0 SEE Marks 60
Total Number of Contact Hours 40 Exam Hours 03

CREDITS –3

Course Learning Objectives: This course (18CS731) will enable students to:
• Learn How to add functionality to designs while minimizing complexity.
• What code qualities are required to maintain to keep code flexible?
• To Understand the common design patterns.
• To explore the appropriate patterns for design problems

Module 1 Contact

Hours

Introduction: what is a design pattern? describing design patterns, the catalog of design
pattern, organizing the catalog, how design patterns solve design problems, how to select a
design pattern, how to use a design pattern. A Notation for Describing Object-Oriented
Systems
Textbook 1: Chapter 1 and 2.7
Analysis a System: overview of the analysis phase, stage 1: gathering the requirements
functional requirements specification, defining conceptual classes and relationships, using the
knowledge of the domain. Design and Implementation, discussions and further reading.
Textbook 1: Chapter 6

RBT: L1, L2, L3

08

Module 2

Design Pattern Catalog: Structural patterns, Adapter, bridge, composite, decorator, facade,
flyweight, proxy.
Textbook 2: chapter 4

RBT: L1, L2, L3

08

Module 3
BehavioralPatterns: Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Observer, State, Template Method
Textbook 2: chapter 5

RBT: L1, L2, L3

08

Module 4
Interactive systems and the MVC architecture: Introduction, The MVC architectural
pattern, analyzing a simple drawing program, designing the system, designing of the
subsystems, getting into implementation, implementing undo operation, drawing
incompleteitems, adding a new feature, pattern-based solutions.
Textbook 1: Chapter 11

RBT: L1, L2, L3

08

Module 5
Designing with Distributed Objects: Client server system, java remote method invocation,
implementing an object-oriented system on the web (discussions and further reading) a note
on input and output, selection statements, loops arrays.
Textbook 1: Chapter 12

RBT: L1, L2, L3

08

Course Outcomes: The student will be able to :
• Design and implement codes with higher performance and lower complexity
• Be aware of code qualities needed to keep code flexible

• Experience core design principles and be able to assess the quality of a design with
respect to these principles.

• Capable of applying these principles in the design of object oriented systems.
• Demonstrate an understanding of a range of design patterns. Be capable of

comprehending a design presented using this vocabulary.
• Be able to select and apply suitable patterns in specific contexts

Question Paper Pattern:
• The question paper will have ten questions.
• Each full Question consisting of 20 marks
• There will be 2 full questions (with a maximum of four sub questions) from each module.
• Each full question will have sub questions covering all the topics under a module.
• The students will have to answer 5 full questions, selecting one full question from each module.

Textbooks:

1. Brahma Dathan, Sarnath Rammath, Object-oriented analysis, design and
implementation, Universities Press,2013

2. Erich Gamma, Richard Helan, Ralph Johman, John Vlissides , Design Patterns, Pearson
Publication,2013.

Reference Books:

1. Frank Bachmann, RegineMeunier, Hans Rohnert “Pattern Oriented Software
Architecture” –Volume 1, 1996.

2. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures and Projects
in Crisis", John Wiley, 1998.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 2

Design pattern

Module 1 - Introduction

“A proven solution to a common problem in a specified context”

Example: We can light a candle if light goes out at night Christopher Alexander (Civil

Engineer) in 1977 wrote

“A pattern describes a problem which occurs over and over again in our environment, and

then describes the core of the solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way twice”

Essential Elements:

The pattern name is a handle we can use to describe a design problem, its solutions, and

consequences in a word or two.

The problem describes when to apply the pattern.

The solution describes the elements that make up the design, their relationships,

responsibilities, and collaborations. The pattern provides an abstract description of a design

problem and how a general arrangement of classes and objects solves it.

The consequences are the results and trade-offs of applying the pattern.

Example Pattern:

Pattern Name – Iterator

Problem – How to serve Patients at a Doctor’s Clinic

Solution – Front-desk manages the order for patients to be called

 By Appointment

 By Order of Arrival

 By Extending Gratitude

 By Exception

Consequences

 Patient Satisfaction

 Clinic’s Efficiency

 Doctor’s Productivity

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 3

Describing Design Patterns

Pattern Name & Classification – Conveys the essence of the pattern concisely

Intent – What design issue the pattern addresses

Also Known As – Other well-known names for this pattern

Motivation – A scenario illustrating a design problem and how it’s being solved by the

pattern

Applicability – Known situations where the pattern can be applied

Structure – OMT (Object Modelling Technique) based graphic representation of the classes

in the pattern

Participants – Classes and objects in the pattern with their responsibilities

Collaborations – How the participants collaborate to carry out their responsibilities

Consequences –

 How does the pattern support its objectives?

 What are the trade-offs and results of using the pattern?

 What aspect of system structure does it let you vary independently?

Implementation – Hints on implementation of the pattern like language dependency

 What pitfalls, hints, or techniques should you be aware of when implementing the

pattern?

 Are there language-specific issues?

Sample Code – Code fragments to implement the pattern in specific language (C++or C# or

java).

Known Uses – Examples of the pattern found in real systems.

Related Patterns – Other patterns closely related with the pattern under consideration

 What design patterns are closely related to this one?

 What are the important differences?

 With which other patterns should this one be used?

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 4

The Catalog of Design Pattern

Abstract Factory: Provide an interface for creating families of related or dependent objects

without specifying their concrete classes.

Adapter:

 Convert the inter face of a class into another interface client’s expect.

 Adapter lets classes work together

Bridge: Decouple an abstraction from its implementation so that two can vary independently.

Builder: Separates the construction of the complex object from its representation so that the

same construction process can create different representations.

Chain of Responsibility: Avoid coupling the sender of a request to it‘s receiver by giving

more than one object a chance to handle the request. Chain the receiving objects and pass the

request along the chain until objects handles it.

Command: Encapsulate a request as an object, thereby letting parameterize clients with

different request, queue or log requests, and support undoable operations.

Composite: Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects uniformly.

Decorator: Attach additional responsibilities to an object dynamically. Decorators provide a

flexible alternative to sub classing for extending functionality.

Façade: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a

higher-level interface that makes the subsystem easier to use.

Factory Method: Defines an interface for creating an object ,but let subclasses decide which

class to instantiate. Factory Method lets a class defer instantiation to subclasses.

Flyweight: Use sharing to support large numbers of fine-grained objects efficiently.

Interpreter: For the given language, it defines the representation of its grammar to interpret

sentences in the language.

Iterator: Provide a way to access the element of an aggregate object sequentially without

exposing its underlying representation.

Mediator: Define an object that encapsulates how a set of objects interact. Mediator

promotes loose coupling of objects and allows to vary their interaction independently.

Memento: Without violating encapsulation, capture and externalize an object‘s internal state

so that object can be restored to this state later.

Observer: Define a one-to-many dependency between objects so that when one object

changes state, all it‘s dependents are notified and updated automatically.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 5

Prototype: Create new objects by copying existing objects.

Proxy: Provide a surrogate or placeholder (substitute) to control the access to the original

object.

Singleton: Ensure a class has only one instance, and provide a point of access to it.

State: Allow an object to alter its behavior when its internal state changes. The object will

appear to change its class

Strategy: Define a family of algorithms, encapsulate each one, and make them

interchangeable. Strategy lets the algorithm vary independently from clients that use it.

Template Method: Define the Skelton of an operation, deferring some steps to subclasses.

Template method subclasses redefine certain steps of an algorithm without changing the

algorithms structure

Visitor: Represent an operation to be performed on the elements of an object structure.

Visitor lets you define a new operation without changing the classes of the elements on which

it operates.

Organizing the Catalog

We classify the design patterns by two criteria.

The first criterion, called purpose, reflects what a pattern does.

1. Creational patterns concern the process of object creation.

2. Structural patterns deal with the composition of classes or objects.

3. Behavioral patterns characterize the ways in which classes or objects interact and

distribute responsibility.

The second criterion, called scope,

 Specifies whether the pattern applies primarily to classes or to objects.

 Class patterns deal with relationships between classes and their subclasses.

 These relationships are established through inheritance, so they are static— fixed at

compile-time.

 Object patterns deal with object relationships, which can be changed at run-time and

are more dynamic.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 6

How Design Patterns solve design problems

 Finding Appropriate Objects

 Determining Object Granularity

 Specifying Object Interfaces

 Specifying Object Implementations

 Class versus Interface Inheritance

 Programming to an Interface, not an Implementation

 Putting Reuse Mechanisms to Work

 Relating Run-Time and Compile-Time Structures

 Designing for Change

1. Finding Appropriate Objects

 An object packages both data and the procedures (code), where the Procedures are the

methods or operations to be performed.

 Objects are encapsulated during the execution and therefore objects cannot be

accessed directly, and its representation is invisible from outside.

 Decomposing a system into objects is the hard part because the parameters like

encapsulation, granularity, dependency, flexibility, performance, evolution,

reusability era to be considered in the object-oriented design.

 Object-oriented design methodologies includes different approaches

 We can write problem statement, single out nouns and verbs, and create

corresponding classes and operations

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 7

 Focus the collaborations and responsibilities in the system

 Strict modeling of the real world and translating the objects found during

analysis into design.

 Object-oriented design end up with low level classes like arrays

 The abstractions are necessary to make the design flexible

 Design pattern helps us to identify less-obvious abstractions.

 Strategy pattern describes how to implement interchangeable families of

algorithms.

 State pattern represents each state of an entity as an object

2. Determining Object Granularity

 Objects can vary tremendously in size and number

 Facade pattern describes how to represent subsystems as objects

 Flyweight pattern describes how to support huge numbers of objects

 Abstract Factory and Builder take the responsibilities of creating other objects

 Visitor and Command pattern implement a request on another object or group of

objects.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 8

3. Specifying Object Interfaces

 Every operation declared by an object specifies: the operation's name, the objects it

takes as parameters, and the operation's return value. This is known as the

operation's signature.

 The set of all signatures defined by an object's operations is called the interface to

the object.

 Any request that matches a signature in the object's interface may be sent to the

object.

 A type is a name used to denote a particular interface.

 Subtype inheriting the interface of its Supertype.

 Objects are known only through their interfaces.

 The run-time association of a request to an object and one of its operations is

known as dynamic binding.

 Design patterns help programmers to define interfaces by identifying their key

elements and the kind of data that get sent across an interface. A design pattern can

also tell what not to put in the interface

Interface:

 Set of all signatures defined by an object’s operations

 Any request matching a signature in the objects interface can be sent to the object

 Interfaces may contain other interfaces as subsets

Type:

 Denotes a particular interfaces

 An object may have many types

 Widely different object may share a type

 Objects of the same type need only share parts of their interfaces

 A subtype contains the interface of its super type

Dynamic Binding, Polymorphism

Binding

 Operation to be performed depends on the request and the object

 Run-time association of a request to an object and this operation is known as dynamic

binding

 Requests does not allow to a particular implementation until run-time

Polymorphism

 Simplifies the definitions of Clients

 Decouples the objects from each other

 Objects vary their relationships to each other at run-time

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 9

An object’s implementation is defined by its class

The class specifies the object‘s internal data and defines the operations the object can

perform

Objects is created by instantiating a class

 An object = An instance of a class

Class inheritance

 Parent class and subclass

Memento Pattern define two interfaces

 Restricted one that lets clients hold and copy

 Privileged one that only the original object can reuse to store and retrieve state

Decorator and Proxy patterns are used for interfaces of objects

Visitor is used to reflect all classes of objects that visitors can visit

4. Specifying Object Implementations

 An object's implementation is defined by its class.

 The class specifies the object's internal data and representation and defines the

operations that the object can perform.

 A dashed arrowhead line indicates a class that instantiates objects of another class.

The arrow points to the class of the instantiated objects.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 10

Inheritance

 New classes can be defined in terms of existing classes using class inheritance. When

a subclass inherits from a parent class, it includes the definitions of all the data and

operations that the parent class defines. Objects that are instances of the subclass will

contain all data defined by the subclass and its parent classes.

 We indicate the subclass relationship with a vertical line and a triangle.

Abstract Class

 Abstract Class is one whose main purpose is to define a common interface for its

subclasses. The operations that an abstract class declares but doesn't implement are

called abstract operations.

 The names of abstract classes appear in slanted type. Slanted type is also used to

denote abstract operations.

 The implementation of the operation is represented by dog-eared box, the code will

appear connected with a dashed line to the operation it implements

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 11

Concrete classes

 Classes that are not abstract are called concrete classes

 A concrete classes implement creation methods of the abstract factory

Override an operation

 Subclasses override an operation defined by its parent classes

 Subclasses redefines the behavoirs of their parent classes

Mixin Class

A Mixin class is a class that's intended to provide an optional interface or functionality to

other classes. Mixin classes require multiple inheritances

Augmented class:

Allows user to create own projects without having any previous knowledge

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 12

5. Class versus Interface Inheritance

 The class defines the object's internal state and the implementation of its operations.

 In contrast, an object's type only refers to its interface—the set of requests to which

it can respond.

 An object can have many types, and objects of different classes can have the same

type.

 An object is an instance of a class; we imply that the object supports the interface

defined by the class.

 Class inheritance defines an object's implementation in terms of another object's

implementation.

 Interface inheritance (or subtyping) describes when an object can be used in place

of another.

Examples: Chain of Responsibility, Composite pattern, Command, Observer, State, and

Strategy.

6. Programming to an Interface, not an Implementation

 Class inheritance is a mechanism for extending an application's functionality by

reusing functionality in parent classes.

 When inheritance is used all classes derived from an abstract class will share its

interface.

 All subclasses can then respond to the requests in the interface of this abstract class

Benefits

 Clients remain unaware of the specific types of objects they use

 Clients remain unaware of the classes that implement these objects, clients only

know about the abstract classes defining the interface.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 13

This leads to the first principle of reusable object-oriented design:

Instantiation of Concrete classes

 Abstract Factory, Builder, Factor method, Prototype and Singleton are the

creational patterns

 Creational patterns ensures that the system is written in terms of interfaces, not

implementations

7. Putting Reuse Mechanisms to work

The challenge lies in applying the concepts like objects, interfaces, classes and inheritance

to build the design patterns to be flexible and reusable

 Inheritance versus Composition

 Delegation

 Inheritance versus Parameterized Types

Inheritance verses composition

 Two techniques for reusing the functionality in object-oriented systems are class

inheritance and object composition

 class inheritance

 White-box reuse

 object composition

 Black-box reuse

White-box reuse:

 Reuse by sub classing (class inheritance)

 Internals of parent classes are often visible to subclasses

 works statically, compile-time approach

 Inheritance breaks encapsulation

Black-box reuse:

 Reuse by object composition

 Requires objects to have well-defined interfaces

 No internal details of objects are visible

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 14

 Class inheritance define the implementation of one class in terms of the other

 Class inheritance: Reuse by sub classing is often referred to as “white-box reuse”.

 The term "white-box" refers to visibility: With inheritance, the internals of parent classes

are often visible to subclasses.

 Defined at compile-time. and straightforward to use

 “Inheritance breaks encapsulation” (superclass implementation exposed to subclasses)

Advantages

 Static, straightforward to use

 Make the implementations being reuse more easily

Disadvantages

 The implementations inherited can’t be changed at run time, because inheritance is

defined at compile time

 Parent classes often define at least part of their subclasses physical representation

 Breaks encapsulation

 Implementation dependencies can cause problems(limits flexibility and reusability)

when we try to reuse a subclass

Object composition:

New functionality is obtained by assembling or composing objects to get more complex

functionality. This style of reuse is called “black-box reuse”, because no internal details of

objects are visible.

 Defined at run-time by objects acquiring references to other objects.

 Must program to interfaces, so interfaces must be well thought-out and stable.

 Emphasis on interface stability encourages granular objects with single

responsibilities

Delegation

In delegation, two objects are involved in handling a request: receiving object delegates

operations to its delegate

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 15

 Advantages: Makes it easy to compose behaviors at run-time and to change the way

they are composed.

 Disadvantages: Dynamic, highly parameterized software is harder to understand than

more static software and there are also run-time inefficiencies

 Delegation is a good design choice only when it simplifies more than it complicates

 Delegation is an extreme example of object composition

Example: Several design patterns use delegation, such as:

a. State: Here an object delegates requests to a State object that represents its current

state

b. Strategy: Here an object delegates a specific request to an object that represents a

strategy for carrying out the request.

Inheritance versus Parameterized Types

 Another technique for reusing functionality is through parameterized types, also

known as generics in ADA and templates in C++

 Allows to define a type without specifying all the other types it uses, the unspecified

types are supplied as parameters at the point of use

 For example :

 To declare a list of integers, we supply the type "integer" as a parameter

 To declare a list of String objects, we supply the "String" type as a parameter.

 Parameterized types, generics, or templates

 Parameterized types gives us a third way to compose behavior in object-oriented

systems

 Many designs can be implemented using any of these three techniques.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 16

 An operation implemented by subclasses (an application of Template Method)

 The responsibility of an object that is passed to the sorting routine (Strategy)

 An argument of a C++ template or Ada generic that specifies the name of the

function is called to compare the elements.

 There are important differences between these techniques.

 Object composition lets us to change the behavior being composed at run-time,

but it requires indirection and can be less efficient

 Inheritance lets us to provide default implementations for operations and lets

subclasses override them

 Parameterized types let us to change the types that a class can use

8. Relating Run-Time and Compile-Time Structures

 An object-oriented program’s run-time structure often bears little resemblance to its

code structure

 The code structure is frozen at compile-time

 A program’s run-time structure consists of rapidly changing networks of

communicating objects

 Aggregation versus Acquaintance (Association)

Aggregation

 Aggregation implies that one object owns or responsible for another object

 Aggregation implies that an aggregate object and its owner have identical

lifetimes

 Generally we speak of an object having or being part of another object.

 Aggregation relationships tend to be permanent than acquaintance.

Acquaintance

 Acquaintance implies that an object merely knows of another object

 Acquainted objects request operations of each other, but they are not

responsible for each other.

 Acquaintance is a weaker relationship than aggregation and suggests much

looser coupling between the objects

 Acquaintances are made and remade more frequently,

 Sometimes Acquaintance is called "Association" or the "using" relationship.

 The distinction between acquaintance and aggregation is determined more by intent

than by explicit language mechanisms

 The system‘s run-time structure must be imposed more by the designer than the

language

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 17

9. Designing for Change

 The key to maximizing reuse lies in anticipating new requirements and changes to

existing requirements, and in designing your systems so that they can evolve

accordingly.

 A design that doesn‘t take change into account risks major redesign in the future

 These changes involve class redefinition and reimplementation, client modification and

retesting

 Redesign affects many parts of the software system and unanticipated changes are

invariably expensive

 Design patterns help us to avoid this by ensuring that a system can change in specific

ways

 Each design pattern lets some aspect of system structure vary independently of other

aspects

 Here are some common causes of redesign along with the design pattern(s) that

address them:

Common Causes of Redesign

 Creating an object by specifying a class explicitly

 Dependence on specific operations

 Dependence on hardware and software platform

 Dependence on object representations or implementations

 Algorithmic dependencies

 Tight coupling

 Extending functionality by sub classing

 Inability to alter classes conveniently

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 18

Creating an object by specifying a class explicitly: Specifying a class name when you create

an object commits you to a particular implementation instead of a particular interface.

Dependence on specific operations: When you specify a particular operation, you commit to

one way of satisfying a request. By avoiding hard-coded requests, you make it easier to

change the way a request gets satisfied both at compile-time and at run-time.

Dependence on hardware and software platform: External operating system interfaces and

application programming interfaces (APIs) are different on different hardware and software

platforms. Software that depends on a particular platform will be harder to port to other

platforms. It may even be difficult to keep it up to date on its native platform. It's important

therefore to design your system to limit its platform dependencies.

Dependence on object representations or implementations: Clients that know how an

object is represented, stored, located, or implemented might need to be changed when the

object changes. Hiding this information from clients keeps changes from cascading.

Algorithmic dependencies: Algorithms are often extended, optimized, and replaced during

development and reuse. Objects that depend on an algorithm will have to change when the

algorithm changes. Therefore algorithms that are likely to change should be isolated.

Tight coupling: Classes that are tightly coupled are hard to reuse in isolation, since they

depend on each other. Tight coupling leads to monolithic systems, where you can't change or

remove a class without understanding and changing many other classes.

Extending functionality by subclassing: Customizing an object by sub classing often isn't

easy. Every new class has a fixed implementation overhead (initialization, finalization, etc.).

Defining a subclass also requires an in-depth understanding of the parent class. For example,

overriding one operation might require overriding another.

Inability to alter classes conveniently: Sometimes you have to modify a class that can't be

modified conveniently. Perhaps you need the source code and don't have it (as may be the

case with a commercial class library).

Design patterns in Application programs

 If you're building an application program such as a document editor or spreadsheet,

then internal reuse, maintainability, and extension are high priorities.

 Internal reuse ensures that you don't design and implement any more than you have

to.

• Design patterns that reduce dependencies can increase internal reuse.

• Design patterns also make an application more maintainable when they are used to

limit platform dependencies and to layer a system

• Looser coupling boosts the likelihood that one class of object can cooperate with

several others

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 19

• Reduced coupling also enhances extensibility

For example, when you eliminated dependencies on specific operations by isolating and

encapsulating each operation, you make it easier to reuse an operation in different contexts.

Design patterns in Toolkits

 A toolkit is a set of related and reusable classes designed to provide useful, general-

purpose functionality.

 An example of a toolkit is a set of collection classes for lists, associative tables, stacks,

and the like.

 The C++ I/O stream library is another example.

 Toolkits emphasize code reuse

 Toolkits are the object-oriented equivalent of subroutine libraries

 Toolkit design is arguably harder than application design

 Toolkits don't impose a particular design on your application; they just provide

functionality that can help your application do its job.

 Toolkit design is arguably harder than application design, because toolkits have to work

in many applications to be useful.

 Moreover, the toolkit writer isn't in a position to know what those applications will be or

their special needs.

Design patterns in Frameworks

 A framework is a set of cooperating classes that makeup a reusable design for a specific

class of software.

 For example, a framework can be geared toward building graphical editors for different

domains like artistic drawing, music composition, and mechanical.

 Another framework can help you build compilers for different programming languages

and target machines.

 We can customize a framework to a particular application by creating application-specific

subclasses of abstract classes from the framework

 The framework dictates the architecture of the application. It will define the overall

structure; it’s partitioning into classes and objects, the key responsibilities thereof, how

the classes and objects collaborate, and the thread of control.

 The framework captures the design decisions that are common to its application domain.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 20

 Frameworks thus emphasize design reuse over code reuse, though a framework will

usually include concrete subclasses you can put to work immediately.

 Frameworks emphasize design reuse over code reuse

 When we use a toolkit, we can write the main body of the application and call the code

which we want to reuse. When we use a framework, we reuse the main body and write

the code it calls.

 Advantages: Builds an application faster, easier to maintain, and more consistent to their

users

 Mature frameworks usually incorporate several design patterns

 The patterns help make the framework's architecture suitable to many different

applications without redesign

 An added benefit comes when the framework is documented with the design patterns it

uses.

 People who know the patterns gain insight into the framework faster.

 Even people who don't know the patterns can benefit from the structure they lend to the

framework's documentation.

 Enhancing documentation is important for all types of software, but it's particularly

important for frameworks.

 Frameworks often pose a steep learning curve that must be overcome before they're

useful.

Differences between framework and design pattern

Patterns and frameworks differ in three ways

1. Design patterns are more abstract than frameworks

 Frameworks can be embodied in code, but only examples of patterns can be embodied

in code.

 A strength of frameworks is that they ca n be written down in programming languages

and not only studied but executed and reused directly.

 Design patterns also explain the intent, trade-offs, and consequences of a design.

2. Design patterns are smaller architectural elements than frameworks

A typical framework contains several design patterns, but the reverse is never true.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 21

3. Design patterns are less specialized than frameworks

 Frameworks always have a particular application domain.

 In contrast, the design patterns in this catalo g can be used in nearly any kind of

application.

How to Select a Design Pattern

 Consider how design patterns solve design Problems

 Scan Intent sections

 Study how patterns interrelate

 Study patterns of like purpose

 Examine a Cause of redesign

 Consider what should be variable in the design

Consider how design patterns solve design problems.

Determine object granularity; specify object interfaces, and several other ways in which

design patterns solve design problems.

Scan Intent sections

Read through each pattern's intent (purpose) to find one or more that should relevant to your

problem.

Study how patterns interrelate

Studying these relationships can help direct you to the right pattern or group of patterns.

Study patterns of like purpose

Study only those patterns which are of specific purposes (creational patterns, structural

patterns, and behavioural patterns).

Examine a cause of redesign.

Look at the patterns that help you avoid the causes of redesign

Consider what should be variable in your design.

Consider what you want to be able to change without redesign.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 22

How to Use a Design Pattern

 Read the pattern once through for an overview.

 Go back and study the Structure, Participants and Collaborations sections.

 Look at the Sample Code section to see a concrete

 Example of the pattern in code.

 Choose names for pattern participants that are meaningful in the application context.

 Define the classes.

 Define Application-specific names for operations in the Pattern

 Implement the operations to carry out responsibilities and collaborations in the

pattern.

1. Read overview of pattern

Pay attention to the Applicability and Consequences sections to ensure the pattern

is right for your problem.

2. Go back and study the Structure, Participants, and Collaborations sections

Make sure you understand the classes and objects in the pattern and how they relate

to one another.

3. Look at the Sample Code section to see a concrete example of the pattern in code

Helps you learn how to implement the pattern.

4. Choose names for pattern participants that are meaningful in the application context

It is useful to incorporate the participant name into the name that appears in the

application.

5. Define the classes

Declare their interfaces, establish their inheritance relationships, and define the

instance variables that represent data and object references.

6. Define application-specific names for operations in the pattern

Use the responsibilities and collaborations associated with each operation as a

guide. Also, be consistent in your naming conventions

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 23

7. Implement the operations to carry out the responsibilities and collaborations in the

pattern

The implementation section offers hints to guide you in the implementation.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 24

What is Object-Oriented Development?

First computers

• First computers are developed mainly to automate a well-defined process (i.e., an

algorithm) for numerical computation, as systems became more complex, its

effectiveness in developing solutions became suspect.

• software applications developed in later years had two differentiating characteristics:

 Behavior that was hard to characterize as a process

 Requirements of reliability, performance, and cost that the original developers

did not face

• The ‘process-centred’ approach to software development used what is called top

down functional decomposition.

 The first step in such a design was to recognize what the process had to deliver

which was followed by decomposition of the process into functional modules.

 Structures to store data were defined and the computation was carried out by

invoking the modules, which performed some computation on the stored data

elements.

 The life of a process-centred design was short because changes to the process

specification required a change in the entire program.

 This resulted in an inability to reuse existing code without considerable

overhead

• Thus engineering disciplines started soon after, and the disciplines of ‘software

design’ and ‘software engineering’ came into existence.

• The reasons for this success are easy to see:

 Easily understandable designs

 Similar (standard) solutions for a host of problems

 An easily accessible and well-defined ‘library’ of ‘building-blocks’

 Interchangeability of components across systems,

 A software component is also capable of storing data,

 The components can also communicate with each other as needed to complete

the process

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 25

Key Concepts of Object-Oriented Design

1. The Central Role of Objects

2. The notion of a Class

3. Abstract specification of functionality

4. A language to define the System

5. Standard Solutions

6. An analysis process to model a system

7. The notions of extendibility and adaptability

Other Related Concepts

Modular Design and Encapsulation

Modular Design

 Modularity refers to the idea of putting together a large system by developing a

number of distinct components, independently and then integrating these to provide

the required functionality.

 This approach is easier to understand than one that is designed as a monolithic

structure. Such a design must be modular.

 The system's functionality must be provided by well-designed, Cooperating modules.

 Each module must perform functionality that is clearly specified by an interface.

 The interface also defines how other components may interact or communicate with

the module.

 We would like that a module clearly specify what it does, but not expose its

implementation. This separation of concerns gives rise to the notion of encapsulation,

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 26

Encapsulation

 Encapsulation, which means that the module hides details of its implementation from

external agents. Example of applying encapsulation.

 The abstract data type (ADT), is generalization of primitive data types such as

integers and characters.

 The programmer specifies the collection of operations on the data type and the data

structures that are needed for data storage.

 Users of the ADT perform the operations without concerning themselves with the

implementation.

Cohesion and Coupling

Cohesion

 Cohesion of a module tells us how well the entities within a module work together to

provide functionality. Cohesion is a measure of how focused the responsibilities of a

module are.

 If the responsibilities of a module are unrelated or varied and use different sets of

data, cohesion is reduced.

 Highly cohesive modules tend to be more reliable, reusable, and understandable than

less cohesive ones.

 In contrast, the worst approach would be to arbitrarily assign entities to modules,

resulting in a module whose constituents have no obvious relationship.

Coupling

 Coupling refers to how modules are dependent on each other.

 The very fact that we split a program into multiple modules introduces some coupling

into the system.

 Coupling could result because of several factors: a module may refer to variables

defined in another module or a module may call methods of another module and use

the return values.

 The amount of coupling between modules can vary.

 In general, if modules do not depend on each others implementation we say that the

coupling is low

 Low coupling allows us to modify a module without worrying changes on the rest of

the system.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 27

 By contrast, high coupling means that changes in one module would necessitate

changes in other modules, which may make it harder to understand the code.

Modifiability and Testability

Modifiability

 The modification in software can be done to change both functionality and design.

 The ability to change the functionality of a component allows for systems to be more

adaptable;

 Improving the design through incremental change is accomplished by refactoring.

 In both cases, the organization of the system in terms of objects and classes has

helped develop systematic procedures that mitigate the risk.

Testability

 Testability refers to both falsifiability, and ease with which we can find bugs in

 Software and the extent to which the structure of the system facilitates the detection of

bugs.

Benefits and Drawbacks of the Paradigm

Advantages

1. Objects often reflect entities in application systems. This makes it easier for a

designer to come up with classes in the design. In a process-oriented design, it is

much harder to find such a connection that can simplify the initial design.

2. Object-orientation helps increase productivity through reuse of existing software.

Inheritance makes it relatively easy to extend and modify functionality provided by a

class. Language designers often supply extensive libraries that users can extend.

3. It is easier to accommodate changes. One of the difficulties with application

development is changing requirements. With some care taken during design, it is

possible to isolate the varying parts of a system into classes.

4. The ability to isolate changes, encapsulate data, and employ modularity reduces the

risks involved in system development.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 28

Drawbacks

1. Object creation and destruction is expensive.

2. Interactions of many objects are complex Example: Banking application, Video game

that has often a large number of objects.

3. Objects tend to have complex associations, which can result in non-locality, leading to

poor memory access times.

4. Programmers and designers schooled in other paradigms, usually in the imperative

paradigm, find it difficult to learn and use object-oriented principles.

5. Programmers may need a year to start feeling comfortable with these concepts.

6. Some researchers are of the opinion that the programming environments also have

not kept up with research in language capabilities.

7. Editors and testing and debugging facilities do not directly support many of the

advances such as design patterns.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 29

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 2

Analyzing a System

2.1 Overview of the Analysis Phase

The major goal of this phase is to address this basic question: what should the system do?

Requirements are often simple and any clarifications can be had via questions in the classroom,

e- mail messages, etc.

However, as in the case of the classroom assignment, there are still two parties: the user community,

which needs some system to be built and the development people, who are assigned to do the work.

The process could be split into three activities:

1. Gather the requirements: this involves interviews of the user community, reading of any available

documentation, etc.

2. Precisely document the functionality required of the system.

3. Develop a conceptual model of the system, listing the conceptual classes and their relationships.

It is not always the case that these activities occur in the order listed.

2.2 Stage 1: Gathering the Requirements

The purpose of requirements analysis is to define what the new system should do. Since the system

will be built based on the information garnered in this step, any errors made in this stage will result

in the implementation of a wrong system. Once the system is implemented, it is expensive to modify

it to overcome the mistakes introduced in the analysis stage.

Imagine the scenario when you are asked to construct software for an application. The client may

not always be clear in his/her mind as to what should be constructed.

First reason for this is that it is difficult to imagine the workings of a system that is not yet built.

Second reason Incompleteness and errors in specifications can also occur because the client does

not have the technical skills to fully realize what technology can and cannot deliver

Third reason for omissions is that it is all too common to have a client who knows the system

very well and consequently either assumes a lot of knowledge on the part of the analyst or simply

skips over the ‘obvious details’.

Requirements can be classified into two categories:

• Functional requirements: These describe the interaction between the system and its users, and

between the system and any other systems, which may interact with the system by supplying or

receiving data.
•

Non-functional requirements: Any requirement that does not fall in the above category is a non-
functional requirement. Such requirements include response time, usability and accuracy.

Sometimes, there may be considerations that place restrictions on system development; these may

include the use of specific hardware and software and budget and time constraints.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 3

2.2.1 Case Study Introduction

Let us proceed under the assumption that developers of our library system have available to them a

document that describes how the business is conducted. This functionality is described as a list of

what are commonly called business processes.

The business processes of the library system are listed below.

1 Add a member

2 Add books

3 Issue books

4 Return books\

5 Remove books

6 Place a hold on a book

7 Remove a hold on a book

8 Process Holds: Find the first member who has a hold on a book

9 Renew books

10 Print out a member’s transactions

11 Store data on disk

12 Retrieve data from disk

13 Exit

In addition, the system must support three other requirements that are not directly related to the

workings of a library, but, nonetheless, are essential.

• A command to save the data on a long-term basis.
• A command to load data from a long-term storage device.
• A command to quit the application. At this time, the system must ask the user if data is to be saved

before termination.

 A real library would have to perform additional operations like generating reports of various

kinds, impose fines for late returns, etc.

 Many libraries also allow users to check out books themselves without approaching a clerk.

 Whatever the case may be, the analysts need to learn the existing system and the

requirements. As mentioned earlier, they achieve this through interviews, surveys, and study.

2.3 Functional Requirements Specification

The requirements specification document serves as a contract between the users and the developers.

we attempt to create a precise documentation of the requirements, we will discover errors and omissions.

An accepted way of accomplishing this task is the use case analysis which we study now.

Use Case Analysis: It is a powerful technique that describes the kind of functionality that a user expects

from the system.

 It is essentially a narrative describing the sequence of events (actions) of an external agent (actor)

using the system to complete a process.

 It is a powerful technique that describes the kind of functionality that a user expects from the

system.

 Use cases have two or more parties: agents who interact with the system and the system itself.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 4

In our simple library system, the members do not use the system directly. Instead, they get services

via the library staff.

To initiate this process, we need to get a feel for how the system will interact with the end-user.We

assume that some kind of a user-interface is required, so that when the system is started, it provides a

menu with the following choices:

1. Add a member

2. Add books

3. Issue books

4. Return books

5. Remove books

6. Place a hold on a book

7. Remove a hold on a book

8. Process Holds: Find the first member who has a hold on a book

9. Renew books

10. Print out a member’s transactions

11. Store data on disk

12. Retrieve data from disk

13. Exit

Use case diagram for the library system

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 5

Use case for registering a user

Steps:

1 Member will give the details of name, address, phone number to the clerk

2 Clerk process the request through the system

3 System asks the details of the customer to be registered.

4 Clerk enters the necessary information of the member into the system.

5 System check the details of the member and if the member is a valid person, then generates member

identification number and display the necessary information at the output

6 Clerk provides the identification number to the user.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 6

Use case for adding books

Actions performed by the actor Responses from the system

1. Library receives a shipment of

books from the publisher

2. The clerk issues a request to

add a new book

 3. The system asks for the

identifier, title, and author name

of the book

4. The clerk generates the unique

identifier, enters the identifier,

title, and author name of a book

 5. The system attempts to enter

the information in the catalog

and echoes to the clerk the title,

author name, and id of the book.

It then asks if the clerk wants to

enter information about another

book

6. The clerk answers in the

affirmative or in the negative

 7. If the answer is in the

affirmative, the system goes to

Step 3. Otherwise, it exits

Steps:

1 Library receives the information about the books shipped from the publisher.

2 Clerk receives a request to process the addition of books to the catalog.

3 System asks the details of the identifier, title, and author name of the book to be added.

4 Clerk generates the necessary information of the book to be added into the system.

5 System adds the details of the book and displays the necessary information of the book at the output

and asks for any more books to be added.

6 If clerk replies affirmative, then same procedure is followed for the next set of books to be added.

Otherwise system quits the application.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 7

Use case for issuing books

Steps:
1 Member gives the set of books with the member identification number to the clerk at the

checkout counter and requests clerk to check out the books.

2 Clerk receives a request to check out the books and start checking in the system.

3 System asks the details of the user ID.

4 Clerk enters the user ID

5 System asks the details of the book ID.

6 Clerk enters the ID of the book to be checked out.

7 i) System checks whether the member possesses the book and generates a due date.

ii) System displays the book title, due date and asks if there is any more books to be processed

8 Clerk stamps due date on the book say yes, if there are books to be checked out. Otherwise no

when there are no books to be processed.

9 If yes, system continues to process from step 5 and asks only for book ID since customer ID is

same, otherwise system exits.

10 Customer collects the books and leave the checkout counter

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 8

Steps:

1 Member gives the set of books with the member identification number to the clerk at the checkout

counter and requests clerk to check out the books.

2 Clerk receives a request to check out the books and start checking in the system.

3 System asks the details of the user ID.

4 Clerk enters the user ID

5 System asks the details of the book ID.

6 Clerk enters the ID of the book to be checked out.

7 i) System checks whether the member is a valid person or not and then records the member has a

possession on the book and generates a due date based on the result of Rule 1.

ii) System displays the book title and due date.

iii) The system displays error message, if the Rule 2 is not satisfied and asks if there is any more

books to be processed.

8 i) Clerk stamps due date on the book and take the print out of the transactions, if the user is

requesting for print out.

ii) Clerk says yes, if there are books to be checked out. Otherwise no when there are no books to be

processed.

9 If yes, system continues to process from step 5 and asks only for book ID since customer ID is same,

otherwise system exits.

10 Customer collects the books and leave the checkout counter

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 9

Use case Return Book

Steps:

1. Member gives the set of books to be returned to the clerk at the checkout counter.

2. On receiving the request, clerk process the return books request in the system.

3. System asks the details of the book ID.

4. Clerk enters the ID of the book to be returned.

5. i) System checks whether the book is valid or not and then records that book is returned.

ii) System informs the clerk about the deadline of the book to be returned and asks clerk that if any

more books are to be returned.

6. i) Clerk says yes, if there are books to be returned, Otherwise no when there are no books to

be returned.

ii) Clerk checks the deadline of the book to be returned based on Rule 5.

7. If yes, system continues to process from step 3, otherwise system exits.

Software Architecture and Design Patterns (17IS72)

Use case Removing Books

Steps:

1 Librarian gives the list of books to be deleted for the clerk.

2 On receiving the list, the clerk starts processing the deletion of books.

3 The system asks ID of the book.

4 The clerk enters the ID of the book.

5 i) The system checks whether the book can be removed as per Rule 3 by verifying the check out and

deadline of the book.

ii) If the book ID is valid, the system removes the book ID from the library’s catalog.

iii) The system displays the success of the deletion operation to the clerk.

iv) System asks the clerk that, there are any more books are to be deleted.

6 The clerk answers yes, if there are books to be processed or no, when there are no books to be

processed.

7 If the answer is yes, then the system goes to Step 3 Otherwise, it exits

7th Semester, Department of ISE Page : 10

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 11

Use case Member Transactions

Steps:

1 The clerk receives a request from the user to give member transactions

2 The system asks for the user ID of the member and the date for which the transactions are required.

3 The clerk enters the ID of the user and the date of the transactions required

4 If the ID is valid, the system outputs information about all transactions completed by the user on the

given date along with the details of book borrowed, book returned, hold placed and the title of the

book.

5 Clerk prints out the transactions and hands them to the user

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 12

Use case Place a Hold and Remove a Hold

Steps:

1 On receiving the request, clerk start processing to place a hold

2 The system asks details of the book such as book ID, the ID of the member and the duration of the

hold

3 The clerk enters all the necessary details.

4 i) The system checks that the user and book ID's whether it is valid or not as per Rule 6

ii) If Rule 6 is satisfied, then the system records that the user has a hold on the book and displays

that; otherwise, it outputs an appropriate error message

Steps:

1 On receiving the request, clerk start processing to remove a hold

2 The system asks details of the book such as book’s ID and the ID of the member

3 The clerk enters the ID of the user and ID of the book

4 The system removes the hold that the user has on the book, prints a confirmation and exits

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 13

Use case Process Holds

Steps:

1 On receiving the request, clerk start processing to place a hold as per Rule 5 by notifying the

member who crosses the deadline.

2 The system asks book ID

3 The clerk enters book ID

4 i) The system checks for the hold whether it is expired or not

ii) If yes, the system records that there is no hold and ask for next books to be processed

5 i) If there is no hold, the book is then kept back to its designated location in the library and no

notification generated.

ii) Clerk replies the system yes or no for the next books to be processed

6 If the answer is yes, the system goes to Step 2; otherwise it exits

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 14

Use case Renew Books

Steps:

1 Member requests for the renew of the books

2 On receiving the request, clerk start processing the renew of books in the system

3 System asks for the member’s ID

4 The clerk enters the member ID into the system

5 i) System checks the record to find out which book is availed by the member

ii) If there are none, the system prints an appropriate message and exits; otherwise it moves to Step 6

6 The system displays the title of the next book to be renewed

7 The clerk replies yes or no

8 i) The system renews the book based on Rule 4 by checking holds on the book and reports the result.

ii) If the system has displayed all checked-out books, it reports that and exits; otherwise the system

goes to Step 6

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 15

Different Rules for the Library System

Rule number Rule

Rule 1 Due-date for a book is one month from the date of

issue

Rule 2 All books are issuable

Rule 3 A book is removable if it is not checked out and if it

has no holds

Rule 4 A book is renewable if it has no holds on it

Rule 5 When a book with a hold is returned, the appropriate

member will be notified

Rule 6 Holds can be placed only on books that are currently

checked out

Guidelines to write use cases

 A use case must provide something of value to an actor or to the business.

 Use case should be functionally cohesive, i.e., they encapsulate a single service that the system

provides.

 Use case should be temporally cohesive. This notion applies to the time frame over which the use

case occurs.

 If a system has multiple actors, each actor must be involved in at least one, and typically several use

cases.

 The model that we construct is a set of use cases.

 Use cases are written from the point of view of the actor.

 A use case describes a scenario.

 Use cases change over the course of system analysis.

Defining Conceptual Classes and Relationships

The last major step in the analysis phase involves the determination of the conceptual classes and the

establishment of their relationships. Example, in the library system, some of the major conceptual classes

include members and books. Members borrow books, which establish a relationship between them.

1 Design facilitation: Via use case analysis, we determine the functional requirement of the system.

Obviously, the design stage must determine how to implement the functionality. For this, the designers

should be in a position to determine the classes that need to be defined, the objects to be created, and

how the objects interact. This is better facilitated if the analysis phase classifies the entities in the

application and determines their relationships.

2 Added knowledge: The use cases do not completely specify the system. Some of these missing details

can be filled in by the class diagram.

3 Error reduction: In carrying out this step, the analysts are forced to look at the system more carefully.

The result can be shown to the client who can verify its correctness.

4 Useful documentation: The classes and relationships provide a quick introduction to the system for

someone who wants to learn it. Such people can join the project to carry out the design or

implementation or subsequent maintenance of the system.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 16

While using this approach, we must remember that natural languages are imprecise and that synonyms

may be found. We can eliminate the others as follows:

 Customer: Becomes a member, so it is effectively a synonym for member.

 User: The library refers to members alternatively as users, so this is also a synonym.

 Application form and request: Application form is an external construct for gathering

information, and request is just a menu item, so neither actually becomes part of the data

structures. Customer’s name, address, and phone number: They are attributes of a customer, so

the Member class will have them as fields.

 Clerk: An agent for facilitating the functioning of the library, so it has no software

representation.

 Identification number: Become a part of a member.

 Data: Gets stored as a member.

 Information: Same as data related to a member.

 System: Refers to the collection of all classes and software.

UML Diagram

(Unified Modeling Language Diagram)

Figure 2.2 UML diagram for the class library

 In the above figure, system implies a conceptual class that represents all of the system.

 This class is Library UML without any attributes and methods.

Figure 2.3 UML diagram for the class Member

 The UML convention is to write the class name at the top with a line below it and the attributes

listed just below that line.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 17

Figure 2.4 UML diagram showing the association of Library and Member

• An association between the conceptual classes Library and Member.

• The line between the two classes and the labels 1, *, and ‘maintains a collection of’ just above it.

• There is only one instance of the Library that maintains a collection of zero or more members.

Figure 2.5 UML diagram for the class Book

Figure 2.6 UML diagram showing the association of Library and Book

Figure 2.7 UML diagram showing the association Borrows between Member and Book

Figure.2.8 UML diagram showing the association Holds between Member and Book

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 18

Figure 2.9 Conceptual classes and their associations

All the conceptual classes and their associations are captured into a single diagram. To reduce complexity,

attributes of the Library, Member, and Book are omitted. As seen before, a relationship formed between

two entities is sometimes accompanied by additional information. This additional information is relevant

only in the context of the relationship.

2.4 Using the Knowledge of the Domain

 Domain analysis is the process of analysing related application systems in a domain so as to discover what

features are common between them and which parts are variable. Thus, one of the goals of this approach is

reuse.

 Any area in which we develop software systems qualifies to be a domain.

 Examples include library systems, hotel reservation systems, university registration systems, etc. It is possible

to divide a domain into several interrelated domains.

 Where does the knowledge of a specific domain come from? It could be from sources such as surveys,

existing applications, technical reports, user manuals, and so on.

 A domain analyst analyses this knowledge to come up with Specifications, designs, and code that can be

reuse in multiple projects

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 19

Fig. 2.10 Domain analysis

2.5 Design and Implementation

The main UML tool employed here is the sequence diagram. In a sequence diagram, the designer specifies

the details of how the behaviour specified in the model will be realized. This process requires the system’s

actions to be broken down into specific tasks, and the responsibility for these tasks to be assigned to the

various players in the system.

Design

During the design process, a number of questions need to be answered:

1 On what platform(s) (hardware and software) will the system run?

2 What languages and programming paradigms will be used for implementation?

3 What user interfaces will the system provide? These include GUI screens, printouts, and other

devices.

4 What classes and interfaces need to be coded? What are their responsibilities?

5 How is data stored on a permanent basis? What medium will be used? What model will be used for

data storage?

6 What happens if there is a failure? Ideally, we would like to prevent data loss and corruption. What

mechanisms are needed for realizing this?

7 Will the system use multiple computers? If so, what are the issues related to data and code

distribution?

8 What kind of protection mechanisms will the system use?

Major subsystems

The first step in our design process is to identify the major subsystems. We can view the library system as

composed of two major subsystems:

1 Business logic: This part deals with input data processing, data creation, queries, and data updates.

This module will also be responsible for interacting with external storage, storing and retrieving data.

2 User interface: This subsystem interacts with the user, accepting and outputting information. It is

important to design the system such that the above parts are separated from each other so that they can

be varied independently.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 20

Creating the Software Classes

The next step is to create the software classes. During the analysis, after defining the use case model,

We came up with a set of conceptual classes and a conceptual class diagram for the entire system.

In this phase there are two major activities.

1. Come up with a set of classes.

2. Assign responsibilities to the classes and determine the necessary data structures and methods.

In general, it is unlikely that we can come up with a design simply by doing these activities exactly once.

Several iterations may be needed and classes may need to be added, split, combined, or eliminated.

Member and Book

 Each Member object comprises several attributes such as name and address, stays in the system for

a long period of time and performs a number of useful functions.

 Books stay part of the library over a long time and we can do a number of useful actions on them.

We need to instantiate books and members quite often. Clearly, both are classes that require

representation in software.

Library: Do we really need to make a class for this? To answer the question, let us ask what real library.

When a member thinks of a library, he/she thinks of borrowing and returning books, placing and removing

holds, i.e., the functionality provided by the library.

Borrows: This class represents the one-to-many relationship between members and books. In typical one-

to-many relationships, the association class can be efficiently implemented as a part of the two classes at the

two ends.

Holds: Unlike Borrows, this class denotes a many-to-many relationship between the Member and Book

classes. In typical many-to-many relationships, implementation of the association without using an

additional class is unlikely to be clean and efficient.

Assigning Responsibilities to the Classes

 Having decided on an adequate set of software classes, our next task is to assign responsibilities to

these. Since the ultimate purpose of these classes is to enable the system to meet the responsibilities

specified in the use case, we shall work with these system responsibilities to find the class

responsibilities.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 21

 Sequence diagrams

 Describe interactions among classes in terms of an exchange of messages over time.

Figure. 2.11 Sequence diagram for adding a new member

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 22

Figure. 2.12 Sequence diagram for adding books

Figure. 2.13 Sequence diagram for issuing books

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 23

Figure. 2.14 Sequence diagram for returning books

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 24

Figure. 2.15 Sequence diagram for removing books

Figure. 2.16 Sequence diagram for printing a member’s transactions

Figure.2.17 Sequence diagram for placing a hold

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 25

Figure. 2.18 Sequence diagram for processing holds

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 26

.

Figure. 2.19 Sequence diagram for removing a holds

Figure. 2.20 Sequence diagram for renewing books

2.6.1.1 Class Diagrams

Hopefully, at this stage, we have come up with all the software classes. To review:

1. Library
2. MemberList
3. Catalog
4. Member
5. Book
6. Hold
7. Transaction

 The relationships between these classes are shown in Figure.
 Note that Hold is not shown as an Association class, but an independent class that connects

Member and Book.
 The new class Transactions added to record transactions; this has a dependency on Book since

it stores the title of the book.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 27

Class Diagram for Library

Figure. 2.21 Relationships between the software classes

Figure. 2.22 Class diagram for Library

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 28

Class Diagram for Member

Figure. 2.23 Class diagram for Member

Class Diagram for Book

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 29

Class Diagram for Catalog

Figure. 2.24 Class diagram for the Book class

Figure.2.25 Class diagram for Catalog class

Class Diagram for MemberList

Figure. 2.26 Class diagram for the MemberList class

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 30

Class Diagram for Hold

Figure.2.27 Class diagram for Hold

Class Diagram for Transaction

Figure 2.28 Class diagram for Transaction

User Interface

As discussed earlier, our UI provides a menu with the following options:

1 Add a member

2 Add books

3 Issue books 4 Return books

4 Renew books

5 Remove books

6 Place a hold on a book

7 Remove a hold on a book

8 Process holds

9 Print a member’s transactions on a given date

10Save data for long-term storage

11Retrieve data fromstorage

12Help

13Exit

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 31

2.6.1.2 Data Storage

Following commands in our UI

1. A command to save the data on a long-term basis.

2. A command to load data from a long-term storage device.

• When the first command is executed, we will copy all of the data onto secondary storage.
Similarly,

• when the second command is executed, the data stored on the storage device is copied to

recreate the object.

2.6.2 Implementing Our Design

1 In this phase, we code, test, and debug the classes that implement the

business logic (Library, Book, etc.) and UserInterface.

2 An important issue in the implementation is the communication via the

return values between the different classes: in particular between Library and

UserInterface.

Adding New Books

The addBooksmethod in UserInterfaceis shown below:

public void addBooks() { Book result;

do {

String title = getToken("Enter book title"); String author = getToken("Enter author");

String bookID = getToken("Enter id");

result = library.addBook(title, author, bookID); if (result != null) {

System.out.println(result);

} else {

System.out.println("Book could not be added");

}

if (!yesOrNo("Add more books?")) {

break;

}

} while (true);

}

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 32

Issuing Books

public void issueBooks() { Book result;

String memberID = getToken("Enter member id"); if

(library.searchMembership(memberID) == null) {

System.out.println("No such member"); return;

}

do {

String bookID = getToken("Enter book id"); result = library.issueBook(memberID,

bookID); if (result != null){

System.out.println(result.getTitle()+ " " + result.getDueDate());

} else {

System.out.println("Book could not be issued");

}

if (!yesOrNo("Issue more books?")) {

break;

}

} while (true);

}

The issueBookmethod in Librarydoes the necessary processing and returns a reference to the issued
book.

public Book issueBook(String memberId, String bookId) { Book book = catalog.search(bookId);

if (book == null) { return(null);

}

if (book.getBorrower() != null) { return(null);

}

Member member = memberList.search(memberId); if (member == null) {

return(null);

}

if (!(book.issue(member) && member.issue(book))) { return null;

}

return(book);

}

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 33

Printing Transactions

public void getTransactions() { Iterator result;

String memberID = getToken("Enter member id");

Calendar date = getDate("Please enter the date for which you want " +

"records as mm/dd/yy"); result =

library.getTransactions(memberID,date); if (result == null) {

System.out.println ("Invalid Member ID");

} else {while (result.hasNext ()) {

Transaction transaction = (Transaction) result.next (); System.out.println (transaction.getType () + "

" +

transaction.getTitle () + "\n");

}

System.out.println ("\n There are no more transactions \n”);

}

}

2.6.2.1 Placing and Processing Holds

public void placeHold(Hold hold) {

transactions.add(new Transaction ("Hold Placed", hold.getBook().getTitle()

)); booksOnHold.add(hold);

}

Toprocess a hold, Libraryinvokes the getNextHold method in Book, which returns the first valid hold.

public Hold getNextHold() {

for (ListIterator iterator = holds.listIterator(); iterator.hasNext();) {Hold hold = (Hold) iterator.next ();

iterator.remove(); if (hold.isValid()) {

return hold;

}

}

return null;

}

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 34

2.6.2.2 Storing and Retrieving the Library Object

Java Serialization

• Our approach to long-term storage of the library data uses the Java serialization mechanism.

• In our Current example, Book and Hold can be serialized by simply declaring them to be

Serializable.

Storing the Data

• Library has references to both the Catalog and member List objects, which in turn have

references to the Book and Member objects respectively.

• The Hold objects are referred by the Book objects and the Member objects.

• Thus, if we simply store the Library object, all of the data will be stored.

Maintaining the Singleton Property

Figure.2.29 A pitfall in using serialization with a singleton

 The Library, MemberList and Catalog objects are singletons: they cannot have more than one instance. Using

the serialization mechanism, it is now possible to serialize an object and then deserialize it to get a second

instance.

 Library library = Library.instance(); Serialize library onto a disk file "library1";

 Library library2 = Deserialized version of "library1"; Update library (add a member);

 Update library2 (delete a book);

Dealing with Static Fields in Non-singletons

 The static fields in non-singletons pose a different challenge. Since the static field idCounter

in Member stores the value that is used to generate the ID for each new member, this value

must be saved along with the library. Since static fields are not serialized, this value will have

to be explicitly written in the write Object method of Member.

 One simple solution to this is to circumvent the problem by encapsulating the static field as a

separate class. The singleton Member Id Server, shown below, holds the idCounter and also

increments it each time getId is invoked.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 35

class MemberIdServer implements Serializable

{ private int idCounter;

private static MemberIdServer server; private MemberIdServer()

{

idCounter = 1;

}

public static MemberIdServer instance()

{

if (server == null)

{

}

else

{

}

}

return (server = new MemberIdServer());

return server;

public int getId() { return idCounter++;

}/

/ other code not shown

}

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 36

2.6 Discussion and Further Reading

Converting the model into a working design is the most complex part of the software design process.

The sequence of topics so far suggests that the design would progress linearly from analysis to design to
implementation.

 Conceptual, Software and Implementation Classes:

Finding the classes is a critical step in the object-oriented methodology. In the analysis phase, we found the
conceptual classes. These correspond to real- world concepts or things, and present us with a conceptual or
essential perspective.

As we go further into the design process and construct the sequence diagrams, we need to deal with the
issue of these conceptual classes. we are now dealing with software classes.

The last step is the implementation class, which is a class created using a specific programming language
such as Java or C++. The last step is the implementation class, which is a class created using a specific

programming language such as Java or C++.

 Building a Commercially Acceptable System:

 Non-functional Requirements: Some issues like portability are automatically resolved since Java is

interpreted and is thus platform independent. Response time (run-time performance) is a sticking

point for object-oriented applications.

 Functional Requirements: It can be argued that for a system to be accepted commercially, it must

provide a sufficiently large set of services, like –

 Additional features can be easily added

 Allowing for variability among kinds of books/members

 Having a more sophisticated interface

 Allowing remote access

 The Facade Pattern: Library class that provided a set of methods for the interface and thus served as a single

point of entry to and exit from the business logic module. In the language of design patterns, what we created

is known as a facade.

• The primary motivation behind using a façade is to reduce the complexity by minimizing

communication and dependencies between a subsystem and its clients . The facade not only shields

the client from the complexity but also enables loose coupling between the subsystem and its clients.

Facades are not typically designed to prevent the client from accessing the components within the

subsystem.

 Using a Facade

Where do we employ this? A situation in which we have:

1. A system with several individual classes, each with its own set of public methods.

2. An external entity interacting with the system requires knowledge of the public

methods of several classes.

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 37

Figure 2.30 Structure diagram for facade

Figure 2.31 Interactions with a subsystem without a facade

Note: Explanation for sequence diagrams can be referred from use case analysis.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 2

MODULE 2

Structural Patterns

 Structural patterns are concerned with how classes and objects are composed to form

larger structures.

 Structural class patterns use inheritance to compose interfaces or implementations.

Example: Multiple inheritance mixes two or more classes into one.

Popular structural design patterns include:

1. Adaptor

2. Bridge

3. Composite

4. Decorator

5. Façade

6. Flyweight

7. Proxy

ADAPTOR

It is both class and object structural pattern.

Intent: To convert the interface of one class into another interface that the client expects.

Adapter pattern allows two incompatible classes to communicate with one another.

Also knows as: Wrapper

Motivation:

 Consider for example a drawing editor that lets users draw and arrange graphical

elements (lines, polygons, text, etc.) into pictures and diagrams.

 The interface for graphical objects is defined by an abstract class called Shape.

 The editor defines a subclass of Shape:

 a LineShape class for lines ,

 a PolygonShape class for polygons, and so forth.

 Geometric shapes like LineShape and PolygonShape are easy to implement, because

their drawing and editing capabilities are inherently limited. But a TextShape subclass

is difficult to implement, since even basic text editing involves :

 complicated screen update and

 buffer management.

 We can reuse TextView to implement TextShape, but the toolkit wasn't designed with

Shape classes in mind. So we can't use TextView and Shape objects interchangeably.

How can existing and unrelated classes like TextView work in an application that

expects classes with a different and incompatible interface?

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 3

 We could change the TextView clas s so that it conforms to the Shape interface,

but that isn't an option unless we have the toolkit's source code . Even if we did,

it wouldn't make sense to change TextView; the toolkit shouldn't have to adopt

domain-specific interfaces just to make one application work.

 Instead, we could define TextShape so that it adapts the TextView interface to

Shape's.

We can do this in one of two ways:

(1) by inheriting Shape's interface and Text View's implementation or

(2) by composing a TextView instance within a TextShape and implementing

TextShape in terms of Text View's interface.

The above diagram illustrates the object adapter case .

 It shows BoundingBox requests, declared in class Shape , are converted to GetExtent

requests defined in Text View .

 Since TextShape adapts Text View to the Shape interface, the drawing editor can reuse

the otherwise incompatible Text View class.

 CreateManipulator operation, which returns an instance of the appropriate Manipulator

subclass.

Manipulator is an abstract clas s for objects that know how to animate a Shape

in response to user input, lik e dragging the shape to a new location.

Applicability: Use adapter pattern when:

1. You want to use an existing class, and its interface is not what you needed.

2. You want to create a reusable class that cooperates with the incompatible classes.

3. You need to use several subclasses (object adapter only) by adapting to theirinterfaces

(by sub classing each subclass) which is impractical. An object adapter can adapt the

interface of their parent class.

Structure: A class adapter uses multiple inheritance to adapt one interface to another. The

structure of class adapter is shown below:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 4

An object adapter relies on object composition. The structure of an object adapter is as shown

below:

Participants:

 Target (shape): Defines the domain specific interface the client uses.

 Client (Drawing Editor): Collaborates with the objects conforming to the Target

interface.

 Adaptee (TextView): Defines an existing interface that needs to be adapted.

 Adapter(TextShape): Adapts the interface of the Adaptee to the Traget interface.

Collaborations:

• Clients call operations on an Adapter instance . In turn, the adapter calls Adaptec

operations that carry out the request.

Consequences: Class and object adapters have different trade-offs.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 5

A class adapter:

 Adapts Adaptee to Target by committing to a concrete Adapter class. As a

consequence, a class adapter won’t work when we want to adapt a class and its

subclasses.

 Let Adapter to override some of the behavior of the Adaptee since it is a subclass of

Adaptee.

 Introduces only one object, and no additional pointer indirection is needed to get to the

Adaptee.

An object adapter:

 Lets a single Adapter work with many Adaptees i.e the Adaptee itself and all of its

subclasses. The Adapter can also add functionality to all Adaptees at once.

 Makes it harder to override Adaptee behavior.

Here are other issues to consider when using the Adapter pattern:

1. How much adapting does Adapter do ?

The amount of work Adapter does depends on how similar the Target interface is to

Adaptee's.

2. Pluggable adapters.

Are classes with built-in interface adaptation.

3. Using two-way adapters to provide transparency.

They're useful when two different client s need to view an object differently.

Two-way class adapter conforms to both of the adapted classes and can work in either

system.

Implementation: Some of the issues to keep in mind while implementing adapter pattern

are given below:

1. Implementing class adapters in C++: Adapter would inherit publicly from Target and

privately from Adaptee. Thus Adapter would be a subtype of Target but not of Adaptee.

2. Pluggable adapters: Three ways to implement pluggable adapters for the TreeDisplay

A narrow interface consisting of only a couple of operations is easier to adapt than an

interface with dozens of operations

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 6

The narrow interface leads to three implementation approaches:

a. Using abstract operations: Define corresponding abstract operations for the narrow

Adaptee interface in the TreeDisplay class. Subclasses must implement the abstract

operations and adapt the hierarchically structured object.

b. Using delegate objects: In this approach, TreeDisplay forwards requests for accessing

the hierarchical structure to a delegate object.

c. Parameterized adapters: The usual way to support pluggable adapters in Smalltalk is to

parameterize an adapter with one or more blocks.. A block can adapt a request, and the

adapter can store a block for each individual request.

Sample code:

Shape assumes a bounding box defined by its opposing corners .

In contrast , TextView is defined by an origin , height , and width. Shape also defines a

CreateManipulator operation for creating a Manipulator object , which knows how to animate

a shape when the user manipulates it.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 7

The BoundingBox operation converts Textview's interface to conform to Shape's.

Th e IsEmpty operation demonstrates the direct forwarding of request s common in adapter

implementations:

Finally , we define CreateManipulator that supports manipulation of a TextShape.

The adapter Text Shape maintains a pointer to Text View.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 8

TextShape must initialize the pointer to the TextView instance , and it does so in the constructor

.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 9

Known Uses

i. ET++Draw reuses the ET++ classes for text editing by using a TextShape adapter class.

ii. Interviews 2.6 defines an object adapter called GraphicBlock, a subclass of Interactor

that contains a Graphic instance. The GraphicBlock adapts the interface of the Graphic

class to that t of Interactor.

iii. ObjectWorks\Smalltalk includes a subclass of ValueModel called PluggableAdaptor.

A PluggableAdaptor object adapts other objects to the ValueModel interface (value ,

value:)

iv. NeXT's AppKit [Add94] use delegate objects to perform interface adaptation.

Related Patterns

 Bridge has a structure similar to an object adapter, but Bridge has a different intent: It

is meant to separate an interface from its implementation so that they can be varied

easily and independently. An adapter is meant to change the interface of an existing

object.

 Decorator enhances another object without changing its interface. A decorator is thus

more transparent to the application than an adapter is. As a consequence, Decorator

supports recursive composition, which isn't possible with pure adapters.

 Proxy defines a representative or surrogate for another object and does not change its

interface.

BRIDGE(Object Structural)

Intent: To decouple an abstraction from its implementation so that both can be changed

independently.

Also knows as: Handle/Body

Motivation:

Consider the implementation of a portable Window abstraction in a user interface toolkit. This

abstraction should enable us to write applications that work on both the X Window System and

IBM's Presentation Manager (PM) platform. But this approach has two drawbacks:

1. To support Icon Windows for both platforms, we have to implement two new classes

, XlconWindow and PMIconWindow.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 10

2. It makes client code platform-dependent. Whenever a client create s a window . For

example, creating an XWindow object binds the Window abstraction to the X Window

implementation, which makes the client code dependent on the X Window

implementation. This , in turn, makes it harder to port the client code to other platforms.

The Bridge pattern addresses these problems by putting the Window abstraction and its

implementation in separate class hierarchies.

We refer to the relationship between Window and Windowlmp as a bridge , because it bridges

the abstraction and its implementation, letting them vary independently.

Applicability: Use bridge pattern when:

 To avoid permanent binding between abstraction and implementation.

 Both abstractions and implementations should be extensible by creating subclasses.

 Changes in implementation should have no impact on client.

 To share and implementation among multiple objects, and this fact should be hidden

from client.

 (C++) you want to hide the implementation of an abstraction completely from clients.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 11

Structure: The structure of bridge pattern is as shown below:

Participants: Following are the participants in bridge pattern:

 Abstraction(window): Defines the abstraction interface and maintains a reference to an

object of type Implementor

 RefinedAbstraction (Iconwindow): Extends the interface defined by Abstraction.

 Implementor (WindowImp): Defines the interface for implementation classes.

 ConcreteImplmentor (XWindowImp, PMWindowImp): Implements the Implementor

interface and defines its concrete implementation

Collaborations: Abstraction forwards client requests to its Implementor object.

Consequences: The bridge pattern has the following consequences:

1. Decoupling interface and implementation: An implementation is not bound permanently

to an interface. The implementation of an abstraction can be configured at run-time. It's even

possible for an object to change its implementation at run-time.

2. Improved extensibility: You can extend the Abstraction and Implementor hierarchies

independently.

3. Hiding implementation details from clients: You can shield clients from implementation

details, like the sharing of implementor objects and the accompanying reference count

mechanism.

Implementation: Following issues should be considered while implementing bridge pattern:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 12

1. Only one Implementor: In situations where there's only one implementation, creating an

abstract Implementor class isn't necessary. This is a degenerate case of the Bridge pattern;

there's a one-to-one relationship between Abstraction and Implementor. Nevertheless, this

separation is still useful when a change in the implementation of a class must not affect its

existing clients—that is, they shouldn't have to be recompiled, just relinked.

2. Creating the right Implementor object: How, when, and where do you decide which

Implementor class to instantiate when there's more than one? If Abstraction knows about all

ConcreteImplementor classes, then it can instantiate one of them in its constructor; it can decide

between them based on parameters passed to its constructor. If, for example, a collection class

supports multiple implementations, the decision can be based on the size of the collection. A

linked list implementation can be used for small collections and a hash table for larger ones.

3.Sharing implementors. The code for assigning handles with shared bodies has the following

general form:

4. Using multiple inheritance. You can use multiple inheritance in C++ to combine an

interface with its implementation

Sample Code

The Window class defines the window abstraction for client applications:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 13

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 14

For example, Application Window will implement DrawContents to draw the View instance it

stores:

..and it implements DrawContents to draw the bitmap on the window:

Window operations are defined in terms of the Windowlmp interface

The XWindowImp subclass supports the X Window System:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 15

For Presentation Manager (PM), we define a PMWindowlmp class:

For example, DeviceRect is implemented for X as follows:

The PM implementation might look like this:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 16

GetWindowImp operation gets the right instance from an abstract that effectively

encapsulates all window system specifics.

Known Uses

1) ET++ Window/WindowPort design extends the Bridge pattern in that the WindowPort

also keeps a reference back to the Window.

2) NeXT's AppKit [Add94] uses the Bridge pattern in the implementation and display of

graphical images.

3) AppKit provides an NXImage/NXImageRep bridge. NXImage defines the interface for

handling images. The implementation of images is defined in a separate NXImageRep

class hierarchy having subclasses such as NXEPSImageRep, NXCachedlmageRep, and

NXBitMapImageRep.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 17

Related Patterns

1) An Abstract Factory can create and configure a particular Bridge.

2) The Adapter pattern is geared toward making unrelated classes work together. It is

usually applied to systems after they're designed. Bridge, on the other hand, is use d up-

front in a design to let abstractions and implementations vary independently.

COMPOSITE(Object Structure)

Intent: To compose objects into tree structures to represent part-whole hierarchies. Composite

pattern lets client treat individual objects and compositions of objects uniformly.

Motivation:

 Graphics applications like drawing editors and schematic capture systems let users

build complex diagrams out of simple components .

 The user can group components to form larger components, which in turn can be

grouped to form still larger components.

 A simple implementation could define classes for graphical primitives such as Text and

Lin s plus other classes that act as containers for these primitives.

 Bu t there's a problem with this approach :

o Code that uses these classes must treat primitive and container objects

differently,. Having to distinguish these objects makes the application more

complex . The Composite pattern describe s how to use recursive composition

so that clients don't have to make this distinction.

 Graphic declares operations like Draw that are specific to graphical objects. It also

declares operations that all composite objects share , such as operations for accessing

and managing its children.

 The subclasses Line , Rectangle, and Text define primitive graphical objects. These

classes implement draw to draw lines , rectangles , and text, respectively .

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 18

 Since primitive graphics have no child graphics, none of these subclasses implements

child-related

The following diagram shows a typical composite object structure of recursively composed

Graphic objects:

Applicability: Use composite pattern when:

1. You-want to represent part-whole hierarchies of objects.

2. You want clients to be able to ignore the difference between compositions of objects

and individual objects.

Structure: The structure of composite pattern is as shown below:

A typical Composite object structure might look like this:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 19

Participants: Following are the participants in composite pattern:

1. Component: Declares the interface for objects in the composition. Declares an

interface for accessing and managing its child components.

2. Leaf: Represents leaf objects in the composition. A leaf has no children. Defines

behavior for primitive objects in the composition.

3. Composite: Defines behavior for components having children. Stores child

components. Implements child-related operations in the composite interface.

4. Client: Manipulates objects in the composition through the Component interface.

Collaborations: Clients use the Component class interface to interact with objects in the

composite structure.

Consequences: The composite pattern:

1. Defines class hierarchies consisting of primitive objects and composite objects.

Primitive objects can be composed into more complex objects, which in turn can be

composed, and so on recursively.

2. Makes the client simple. Clients can treat composite structures and individual objects

uniformly.

3. Makes it easier to add new kinds of components. Newly defined Composite or Leaf

subclasses work automatically with existing structures and client code.

4. Can make your design overly general. The disadvantage of making it easy to add new

components is that it makes it harder to restrict the components of a composite.

Sometimes you want a composite to have only certain components.

Implementation: Following are the issues to consider when implementing composite pattern:

1. Explicit parent references: Maintaining references from child components to their parent

can simplify the traversal and management of a composite structure. The parent reference

simplifies moving up the structure and deleting a component. Parent references also help

support the Chain of Responsibility pattern.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 20

2. Sharing components: It's often useful to share components, for example, to reduce storage

requirements. But when a component can have no more than one parent, sharing components

becomes difficult.

3. Maximizing the Component interface: One of the goals of the Composite pattern is to make

clients unaware of the specific Leaf or Composite classes they're using. To attain this goal, the

Component class should define as many common operations for Composite and Leaf classes

as possible. The Component class usually provides default implementations for these

operations, and Leaf and Composite subclasses will override them.

4. Declaring the child management operations: Although the Composite class implements the

Add and Remove operations for managing children, an important issue in the Composite

pattern is which classes declare these operations in the Composite class hierarchy.

5. Should Component implement a list of Components: You might be tempted to define the set

of children as an instance variable in the Component class where the child access and

management operations are declared. But putting the child pointer in the base class incurs a

space penalty for every leaf, even though a leaf never has children.

6. Child ordering: Many designs specify an ordering on the children of Composite. In the earlier

Graphics example, ordering may reflect front-to-back ordering. If Composites represent parse

trees, then compound statements can be instances of a Composite whose children must be

ordered to reflect the program.

7. Caching to improve performance: If you need to traverse or search compositions frequently,

the Composite class can cache traversal or search information about its children. The

Composite can cache actual results or just information that lets it short-circuit the traversal or

search.

8. Who should delete components: In languages without garbage collection, it's usually best

to make a Composite responsible for deleting its children when it's destroyed. An exceptionto

this rule is when Leaf objects are immutable and thus can be shared.

9. What's the best data structure for storing components: Composites may use a variety of data

structures to store their children, including linked lists, trees, arrays, and hash tables. The choice

of data structure depends (as always) on efficiency.

Sample code: A diagram is a structure that consists of Objects such as Circle, Lines, Triangle

etc and when we fill the drawing with color (say Red), the same color also gets applied to the

Objects in the drawing. Here drawing is made up of different parts and they all have same

operations.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 21

Composite Pattern consists of following objects.

1. Base Component – Base component is the interface for all objects in the composition, client

program uses base component to work with the objects in the composition. It can be an interface

or an abstract class with some methods common to all the objects.

2. Leaf – Defines the behaviour for the elements in the composition. It is the building block for

the composition and implements base component. It doesn’t have references to other

Components.

3. Composite – It consists of leaf elements and implements the operations in base component.

Here I am applying composite design pattern for the drawing scenario.

Base Component: Base component defines the common methods for leaf and composites, we

can create a class Shape with a method draw(String fillColor) to draw the shape with given

color.

//Shape.java

public interface Shape

{

public void draw(String fillColor);

}

Leaf Objects: Leaf implements base component and these are the building block for the

composite. We can create multiple leaf objects such as Triangle, Circle etc.

//Triangle.java

public class Triangle implements Shape

{

@Override

public void draw(String fillColor)

{

System.out.println("Drawing Triangle with color "+fillColor);

}

}

//Circle.java

public class Circle implements Shape

{

@Override

public void draw(String fillColor)

{

System.out.println("Drawing Circle with color "+fillColor);

}

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 22

}

Composite: A composite object contains group of leaf objects and we should provide some

helper methods to add or delete leafs from the group. We can also provide a method to remove

all the elements from the group.

//Drawing.java

import java.util.ArrayList;

import java.util.List;

public class Drawing implements Shape

{ //collection of Shapes

private List<Shape> shapes = new ArrayList<Shape>();

@Override

public void draw(String fillColor)

{

for(Shape sh : shapes)

{ sh.draw(fillColor); }

} //adding shape to drawing

public void remove(Shape s)

{ shapes.remove(s); }

//removing all the shapes

public void clear()

{

System.out.println("Clearing all the shapes from drawing");

this.shapes.clear();

}

}

public void add(Shape s)

{

this.shapes.add(s);

} //removing shape from drawing

//TestCompositePattern.java

public class TestCompositePattern

{ public static void main(String[] args)

{ Shape tri = new Triangle();

Shape tri1 = new Triangle();

Shape cir = new Circle();

Drawing drawing = new Drawing();

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 23

drawing.add(tri1);

drawing.add(tri1);

drawing.add(cir);

drawing.draw("Red");

drawing.clear();

drawing.add(tri);

drawing.add(cir);

drawing.draw("Green");

}

}

Known Uses

1. ET++ (with its VObjects [WGM88]) and

2. Interviews (Style s [LCI+92],

3. Graphics [VL88] , and

4. The RT L Smalltalk compiler framework

5. RegisterTransferSet , is a Composite class for representing assignments that change

several registers at once.

6. Financial domain , where a portfolio aggregates individual assets.

Related Patterns

1. Decorator is often used with Composite. When decorators and composites are used

together, they will usually have a common parent class. So decorators will have to

support the Component interface with operations like Add, Remove, and GetChild.

2. Flyweight lets you share components, but they can no longer refer to their parents.

3. Iterator can be used to traverse composites.

4. Visitor localizes operations and behavior that would otherwise be distributed across

Composite and Leaf classes.

Decorator Pattern

Intent: To attach additional responsibilities to an object dynamically. Decorator provides an

alternative to subclassing for extending the functionality.

Also knows as: Wrapper

Motivation

 Sometimes we want to add responsibilities to individual objects , not to an entire class

.

 A graphical user interface toolkit, for example, should let you add properties like

borders or behaviors like scrolling to any user interface component.

 One way to add responsibilities is with inheritance.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 24

 Inheriting a border from another class puts a border around every subclass instance,this

is inflexible. A client can't control how and when to decorate the component with a

border.

 A more flexible approach is to enclose the component in another object that adds the

border. The enclosing object is called a decorator .

 The decorator forwards requests to the component and may perform additional actions

(such as drawing a border) before or after forwarding.

For example:

 Suppose we have a Text View object that displays text in a window.

 Text View has no scroll bars by default, because we might not always need them. When

we do, we can use a ScrollDecorator to add them.

 Suppose we also want to add a thick black border around the Text View . We can use

a BorderDecorator to add this as well.

 We simply compose the decorators with the Text Vie w to produce the desired result.

The following object diagram shows how to compose a Text View object with BorderDecorator

and ScrollDecorator objects to produce a bordered, scrollable text view:

The ScrollDecorato r and BorderDecorator classes are subclasses of Decorator, an abstract

class for visual components that decorate other visual components.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 25

 Visual Component defines their drawing and event handling interface.

 Note how the Decorator class simply forwards draw requests to its component, and how

Decorator subclasses can extend this operation. Decorator subclasses are free to add

operations for specific functionality.

Applicability:

1. To add additional responsibilities to individual objects dynamically and transparently,

that is, without affecting other objects.

2. For responsibilities that can be withdrawn.

3. When extension by subclassing is impractical.

Structure: The structure of decorator pattern is as shown below:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 26

Participants

• Component (VisualComponent) - defines the interface for objects that can have

responsibilities added to them dynamically.

• ConcreteComponent (TextView) - defines an object to whic h additional responsibilitie s can

be attached.

• Decorator - maintains a reference to a Component object and defines an interface that

conforms to Component's interface.

• ConcreteDecorator (BorderDecorator, ScrollDecorator) - Adds responsibilities to the

component

Collaborations: Decorator forwards requests to its component object. It may optionally

perform additional operations before and after forwarding the request.

Consequences: The decorator pattern has atleast two key benefits and two liabilities:

1. More flexibility than static inheritance: The Decorator pattern providesa more flexible way

to add responsibilities to objects than can be had withstatic (multiple) inheritance.

2. Avoids feature-laden classes high up in the hierarchy: Decorator offersa pay-as-you-go

approach to adding responsibilities. Instead of trying tosupport all foreseeable features in a

complex, customizable class, you candefine a simple class and add functionality incrementally

with Decoratorobjects.

3. A decorator and its component aren't identical: A decorator acts as atransparent enclosure.

But from an object identity point of view, adecorated component is not identical to the

component itself.

4. Lots of little objects: A design that uses Decorator often results in systemscomposed of lots

of little objects that all look alike. The objects differonly in the way they are interconnected,

not in their class or in the valueof their variables.

Implementation: Following issues should be considered when applying the decorator pattern:

1. Interface conformance: A decorator object's interface must conform to the interface of the

component it decorates. ConcreteDecorator classes must therefore inherit from a common

class.

2. Omitting the abstract Decorator class: There's no need to define an abstract Decoratorclass

when you only need to add one responsibility.

3. Keeping Component classes lightweight: To ensure a conforming interface, components

and decorators must descend from a common Component class. It's important to keep this

common class lightweight; that is, it should focus on defining an interface, not on storing data.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 27

4. Changing the skin of an object versus changing its guts: We can think of a decorator as a

skin over an object that changes its behavior. An alternative is to change the object's guts. The

Strategy (349) pattern is a good example of a pattern for changing the guts.

Sample Code

The following cod e shows how to implement user interface decorators in C++.

We define a subclass of VisualComponent called Decorator

Subclasses of Decorator define specific decorations. For example, the class BorderDecorator

adds a border to its enclosing component

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 28

TextView is a VisualComponent, which lets us put it into the window:

window->SetContents(textView);

Bu t w e want a bordere d an d scrollabl e TextView. S o w e decorat e i t accordingl y

before putting it in the window.

Known Uses

1. Interviews [LVC89 , LCI+92],

2. ET++ [WGM88] ,

3. ObjectWorks\Smalltalk class library

4. A DebuggingGlyph prints out debugging information before and after it

forwards a layout request to its component.

Related patterns:

1. Adapter: A decorator is different from an adapter in that a decorator only

changes an object's responsibilities, not its interface; an adapter will give an

object a completely new interface.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 29

2. Composite: A decorator can be viewed as a degenerate composite with only

one component. However, a decorator adds additional responsibilities—it isn't

intended for object aggregation.

3. Strategy: A decorator lets you change the skin of an object; a strategy lets you

change the guts. These are two alternative ways of changing an object.

FAÇADE (Object Structure)

Intent: Provide a unified interface to a set of interfaces in a subsystem. Façade defines a

higher-level interface that makes the subsystem easier to use.

Motivation

 Structuring a system into subsystems helps reduce complexity.

 A common design goal is to minimize the communication and dependencies between

subsystems.

 One way to achieve this goal is to introduce a facade object that provides a single,

simplified interface to the more general facilities of a subsystem.

Consider for example a programming environment that gives applications access to its

compiler subsystem. This subsystem contains classes such as Scanner, Parser, ProgramNode,

BytecodeStream, and ProgramNodeBuilder that implement the compiler. Some specialized

applications might need to access these classes directly. But most clients of a compiler

generally don't care about details like parsing and code generation; they merely want to compile

some code. For them, the powerful but lowlevel interfaces in the compiler subsystem only

complicate their task.

To provide a higher-level interface that can shield clients from these classes, the compiler

subsystem also includes a Compiler class. This class defines a unified interface to the

compiler's functionality. The Compiler class acts as a facade: It offers clients a single, simple

interface to the compiler subsystem.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 30

Applicability:

Use façade pattern :

1. To provide a simple interface to a complex system.

2. To decouple a subsystem from clients and other subsystems, thereby promoting system

independence and portability.

3. To define an entry point to each subsystem level. If subsystems are dependent, then the

dependencies can be simplified by making them communicate with each other solely

through their façade.

Structure

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 31

Participants: The participants in the façade pattern are:

1. Façade (compiler): Knows which subsystem classes are responsible for a request.

Delegates client requests to appropriate subsystem objects.

2. Subsystem classes (scanner, parser, programnode….): Implement subsystem

functionality. Handle work assigned by the Façade object. Have no knowledge of the

Façade.

Collaborations: Clients communicate with the subsystem by sending requests to the Façade,

which forwards them to the appropriate subsystem object.

Consequences: The façade pattern offers the following benefits:

1. It shields clients from subsystem components, thereby reducing the number of objects that

clients deal with and making the subsystem easier to use.

2. It promotes weak coupling between the subsystem and its clients. Often the components in

a subsystem are strongly coupled. Weak coupling lets you vary the components of the

subsystem without affecting its clients.

3. It doesn't prevent applications from using subsystem classes if they need to. Thus you can

choose between ease of use and generality.

Implementation: Following issues should be considered when implementing façade pattern:

1. Reducing client-subsystem coupling: The coupling between clients and the subsystem can

be reduced even further by making Facade an abstract class with concrete subclasses for

different implementations of a subsystem. Then clients can communicate with the subsystem

through the interface of the abstract Facade class. This abstract coupling keeps clients from

knowing which implementation of a subsystem is used.

2. Public versus private subsystem classes: A subsystem is analogous to a class in that both

have interfaces, and both encapsulate something—a class encapsulates state and operations,

while a subsystem encapsulates classes. And just as it's useful to think of the public and private

interface of a class, we can think of the public and private interface of a subsystem.

Sample Code :

Let's take a closer look at how to put a facade on a compiler subsystem.

The Scanner class takes a stream of characters and produces a stream of tokens, one token at a

time.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 32

The class Parser uses a ProgramNodeBuilder to construct a parse tree from a Scanner's tokens.

Parser calls back on ProgramNodeBuilder to build the parse tree incrementally.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 33

ProgramNode defines an interface for manipulating the program node and its children, if any.

The Traverse operation takes a CodeGenerator object. ProgramNode subclasse s use this object

to generate machine cod e in the form of Bytecode objects on a BytecodeStream.

ExpressionNode defines Traverse as follows:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 34

Compiler provides a simple interface for compiling source and generating code for a particular

machine.

Known Uses

1. In the ET++ application framework [WGM88] , an application can have built-

in browsing tools for inspecting its objects at run-time. These browsing tools

are implemented in a separate subsystem that includes a Facade class called

"ProgrammingEnvironment."

2. The Choices operating system [CIRM93] uses facades to compose many

frameworks into one . The key abstractions in Choice s are processes , storage,

and address spaces.

3. The virtual memory framework has Domain as its façade

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 35

The main operations on Domain support are

 adding a memory object at a particular address,

 removing a memory object, and

 handling a page fault.

The virtual memory subsystem uses the following components internally:

 MemoryObject represents a data store.

 MemoryObjectCache caches the data of MemoryObjects in physical memory.

MemoryObjectCache is actually a Strategy that localizes the caching policy.

 AddressTranslation encapsulates the address translation hardware.

Related patterns:

1. Abstract Factory

 It can be used with Facade to provide an interface for creating subsystem objects

in a subsystem-independent way.

 Abstract Factory can also be used as an alternative to Facade to hide platform-

specific classes.

2. Mediator

 Mediator is similar to Facade in that it abstracts functionality of existing classes.

 However, Mediator's purpose is to abstract arbitrary communication between

colleague objects, often centralizing functionality that doesn't belong in any one

of them.

 In contrast, a facade merely abstracts the interface to subsystem objects to make

them easier to use; it doesn't define new functionality, and subsystem classes

don't know about it.

3. Usually only one Facade object is required. Thus Facade objects are often Singletons.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 36

FLYWEIGHT (Object Structure)

Intent

Use sharing to support large numbers of fine-grained objects efficiently

Motivation

 Most document editor implementations have text formatting and editing.

 Object-oriented document editors typically use objects to represent embedded

elements like tables and figures.

 Characters and embedded elements could then be treated uniformly with respect

to how they are drawn and formatted.

 The application could be extended to support new character sets without

disturbing other functionality.

 The following diagram shows how a document editor can use objects to

represent characters.

 The drawback of such a design is its cost.

 Even moderate-sized documents may require hundreds of thousands of

character objects, which will consume lots of memory and may incur

unacceptable run-time overhead.

 The Flyweight pattern describes how to share objects to allow their use at fine

granularities without prohibitive cost.

 A flyweight is a shared object that can be used in multiple contexts

simultaneously.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 37

 The flyweight acts as an independent object in each context.

 The key concept here is the distinction between intrinsic and extrinsic state.

 Intrinsic state is stored in the flyweight; it consists of information that's

independent of the flyweight's context, thereby making it sharable.

 Extrinsic state depends on and varies with the flyweight's context and

therefore can't be shared.

 Client objects are responsible for passing extrinsic state to the flyweight when

it needs it.

 For example,

 a document editor can create a flyweight for each letter of thealphabet.

 Each flyweight stores a character code , but its coordinate position in the

document and its typographic style can be determined from the text

layout algorithms and formatting commands in effect wherever the

character appears.

 The character code is intrinsic state, while the other information is extrinsic.

 Logically there is an object for every occurrence of a given character in the

document:

 Each occurrence of a particular character object refers to the same instance in the shared

pool of flyweight objects:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 38

The class structure for these objects is shown next.

 Glyph is the abstract class for graphical objects , some of which may be flyweights.

 Operations that may depend on extrinsic state have it passed to them as a parameter.

For example, Draw and Intersects must know which context the glyph is in before they

can do their job.

Applicability: Apply flyweight pattern when all of the following are true:

1. An application uses a large number of objects.

2. Storage costs are high because of the sheer quantity of objects.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 39

Structure:

3. Most object state can be made extrinsic.

4. Many groups of objects may be replaced by relatively few shared objects once

extrinsic state is removed.

5. The application doesn’t depend upon object identity

The structure of flyweight pattern is shown below:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 40

The following object diagram shows how flyweights are shared:

Participants

1. Flyweight (Glyph) - declares an interface through which flyweights can receive

and act on extrinsic state.

2. ConcreteFlyweight(Character): Implements the Flyweights interface and adds

storage for intrinsic state, if any. A ConcreteFlyweight object must be sharable

3. UnsharedConcreteFlyweight(Row,column): Not all Flyweight subclasses need

to be shared. The Flyweight interface enables sharing, it doesn’t enforce it.

4. FlyweightFactory: Creates and manages flyweight objects. Ensures that

flyweights are shared properly.

5. Client: Maintains a reference to flyweight(s). Computes or stores the extrinsic

state of flyweight(s).

Collaborations:

 State that a flyweight needs to function must be characterized as either intrinsic or

extrinsic.

 Intrinsic state is stored in the ConcreteFlyweight object;

 extrinsic state is stored or computed by Client objects. Clients pass this state to

the flyweight when they invoke its operations.

 Clients should not instantiate ConcreteFlyweights directly. Clients must obtain

ConcreteFlyweight objects exclusively from the FlyweightFactory object to ensure

they are shared properly.

Consequences:

Flyweights may introduce run-time costs associated with transferring, finding, and/or

computing extrinsic state, especially if it was formerly stored as intrinsic state.

However, such costs are offset by space savings, which increase as more flyweights are shared.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 41

Storage savings are a function of several factors:

 The reduction in the total number of instances that comes from sharing

 The amount of intrinsic state per object

 Whether extrinsic state is computed or stored.

Implementation: Following issues must be considered while implementing flyweight pattern:

1. Removing extrinsic state. The pattern's applicability is determined largely by how easy it

is to identify extrinsic state and remove it from shared objects. Removing extrinsic state won't

help reduce storage costs if there are as many different kinds of extrinsic state as there are

objects before sharing.

2. Managing shared objects. Because objects are shared, clients shouldn't instantiate them

directly. FlyweightFactory lets clients locate a particular flyweight. FlyweightFactory objects

often use an associative store to let clients look up flyweights of interest.

Sample Code

Returning to our document formatter example, we can define a Glyph base class for flyweight

graphical objects. Logically, glyphs are Composite that have graphical attributes and can draw

themselves. Here we focus on just the font attribute, but the same approach can be used for any

other graphical attributes a glyph might have.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 42

The Character subclass just stores a character code:

Glyph's child iteration and manipulation operations must update the GlyphContext whenever

they're used.

 GlyphContext must be kept informed of the current position in the glyph structure

during traversal.

 GlyphContext : : Next increments index as the traversal proceeds

 GlyphContext : : GetFont uses the index as a key into a BTree structure that stores the

glyph-to-font mapping.

 The BTree structure for font information might look like

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 43

Known Uses

1. The concept of flyweight objects was first describe d and explore d as a design

technique in Interviews 3.0. Its developers built a powerful document editor called Doc

as a proof of concept.

2. ET++ [WGM88] uses flyweights to support look-and-feel independence.The look-and-

feel standard affects the layout of user interface elements (e.g., scroll bars, buttons,

menus—known collectively as "widgets") and their decoration s (e.g., shadows,

beveling).

3. The Layout objects are created and managed by Look objects. The Look class is an

Abstract Factory that retrieves a specific Layout object with operations like

GetButtonLayout, GetMenuBarLayout, and so forth .

Related patterns

1. The Flyweight pattern is often combined with the Composite pattern to implement a

logically hierarchical structure in terms of a directed-acyclic graph with shared leaf

nodes.

2. It's often best to implement State and Strategy objects as flyweights.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 44

Proxy Pattern(Object Structure)

Intent: To provide a surrogate or placeholder for another object to control access to it.

Also knows as: Surrogate

Motivation

 Consider a document editor that can embed graphical objects in a document.

 Some graphical objects, like large raster images, can be expensive to create.

 But opening a document should be fast, so we should avoid creating all the expensive

objects at once when the document is opened.

 This isn't necessary anyway, because not all of these objects will be visible in the

document at the same time.

 These constraints would suggest creating each expensive object on demand, which in

this case occurs when an image becomes visible.

But what do we put in the document in place of the image ?

And how can we hide the fact that the image is created on demand so that we don't

complicate the editor's implementation?

This optimization shouldn't impact the rendering and formatting code , for example. The

solution is to use another object, an image proxy, that acts as a stand-in for the real image. The

proxy acts just like the image and takes care of instantiating it when it's required

 The image proxy creates the real image only when the document editor asks it to display

itself by invoking its Draw operation.

 The proxy forwards subsequent requests directly to the image.

 It must therefore keep a reference to the image after creating it.

 Let's assume that images are stored in separate files .

 In this case we can use the file name as the reference to the real object.

 The proxy also stores its extent, that is, its width and height.

 The extent lets the proxy respond to requests for its size from the formatter without actually

instantiating the image.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 45

The following class diagram illustrates this example in more detail.

Applicability: Proxy pattern is applicable when:

1.A remote proxy provides a local representative for an object in a different address space.

2.A virtual proxy creates expensive objects on demand.

3.A protection proxy controls access to the original object. Protection proxies are useful when

objects should have different access rights.

4. A smart reference is a replacement for a bare pointer that performs additional actions when

an object is accessed.

 counting the number of references to the real object so that it can be freed automatically

when there are no more references (also called smart pointers [Ede92]).

 loading a persistent object into memory when it's first referenced.

 checking that the real object is locked before it's accessed to ensure that no other object

can change it.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 46

Structure

Participants: The participants in proxy pattern are:

1. Proxy (Image Proxy): Maintains a reference that lets the proxy access the real subject.

Provides an interface identical to Subject so that the Proxy can be substituted for the

real subject. Controls access to the real subject.

other responsibilities depend on the kind of proxy:

a) remote proxies are responsible for encoding a request

b) virtual proxies may cache additional information about the real subject so that

they can postpone accessing it.

c) protection proxies check that the caller has the access permissions required to

perform a request.

2. Subject(Graphics): Defines the common interface for RealSubject and Proxy so that a

Proxy can be used anywhere a RealSubject is expected.

3. RealSubject(Image): Defines the real object that the proxy represents.

Collaborations

• Proxy forwards requests to RealSubject when appropriate, depending on the kind of proxy.

Consequences: The Proxy pattern introduces a level of indirection when accessing an object.

The additional indirection has many uses, depending on the kind of proxy:

1. A remote proxy can hide the fact that an object resides in a different address space.

2. A virtual proxy can perform optimizations such as creating an object on demand.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 47

3. Both protection proxies and smart references allow additional housekeeping tasks when an

object is accessed.

Implementation: The Proxy pattern can exploit the following language features:

1. Overloading the member access operator in C++: C++ supports overloading operator->, the

member access operator. Overloading this operator lets you perform additional work whenever

an object is dereferenced.

2. Using doesNotUnderstand in Smalltalk: Smalltalk provides a hook that you can use to

support automatic forwarding of requests. Smalltalk calls doesNotUnderstand: aMessage when

a client sends a message to a receiver that has no corresponding method. The Proxy class can

redefine doesNotUnderstand so that the message is forwarded to its subject.

3. Proxy doesn't always have to know the type of real subject: If a Proxy class can deal with

its subject solely through an abstract interface, then there's no need to make a Proxy class for

each RealSubject class; the proxy can deal with all RealSubject classes uniformly. But if

Proxies are going to instantiate RealSubjects (such as in a virtual proxy), then they have to

know the concrete class.

Sample Code

1 . A virtual proxy. The Graphic class defines the interface for graphical objects:

The Image class implements the Graphic interface to display image files. Image overrides

HandleMouse to let users resize the image interactively.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 48

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 49

The constructor save s a local copy of the name of the file that stores the image, and it

initializes -extent and -image:

The implementation of GetExtent returns the cache d extent if possible ; otherwise the image

is loaded from the file.

The Save operation saves the cache d image extent and the image file name to

a stream. Load retrieves this information and initializes the corresponding members.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 50

Finally, suppose we have a class TextDocument that can contain Graphic objects:

Known Uses

1. The virtual proxy example in the Motivation section is from the ET++ text building

block classes.

2. NEXTSTEP [Add94] uses proxies (instances of class NXProxy) as local

representatives for objects that may be distributed.

3. McCullough [McC87] discusses using proxies in Smalltalk to access remote objects.

4. Pascoe [Pas86] describes how to provide side-effects on method calls and access

control with "Encapsulators."

Related patterns:

1. An adapter provides a different interface to the object it adapts. In contrast, a proxy

provides the same interface as its subject. However, a proxy used for access protection

might refuse to perform an operation that the subject will perform, so its interface may

be effectively a subset of the subject's.

2. Although decorators can have similar implementations as proxies, decorators have a

different purpose. A decorator adds one or more responsibilities to an object, whereas

a proxy controls access to an object.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Module 3

Behavioral Patterns

Behavioral patterns are concerned with algorithms and the assignment of responsibilities between

objects. Behavioral patterns describe not just patterns of objects or classes but also the patterns of

communication between them. These patterns characterize complex control flow that's difficult to

follow at run-time.

Behavioral class patterns use inheritance to distribute behavior between classes. Behavioral object

patterns use object composition rather than inheritance. Some describe how a group of peer objects

cooperate toper form a task that no single object can carry out by itself.

Chain of Responsibility

Intent

Avoid coupling the sender of a request to its receiver by giving more than one object a chance

to handle the request. Chain the receiving objects and pass the request along the chain until an object

handles it.

Motivation

Consider a context-sensitive help facility for a graphical user interface. The user can obtain

help information on any part of the interface just by clicking on it. The help that's provided depends

on the part of the interface that's selected and its context.

For example, a button widget in a dialog box might have different help information than a similar

button in the main window. If no specific help information exists for that part of the interface, then the

help system should display a more general help message about the immediate context the dialog box

as a whole.

The problem here is that the object that ultimately provides the help isn't known explicitly to the object

that initiates the help request. What we need is a way to decouple the button that initiates the help

request from the objects that might provide help information. The Chain of Responsibility pattern

defines how that happens.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

The idea of this pattern is to decouple senders and receivers by giving multiple objects a chance to

handle a request. The request gets passed along a chain ofobjects until one of them handles it.

The first object in the chain receives the request and either handles it or forwards it to the next

candidate on the chain, which does like wise. The object that made the request has no explicit

knowledge of who will handle it—we say thheasreaqnueimstplicit receiver.

Let's assume the user clicks for help on a button widget marked "Print." The button is contained in

an instance of PrintDialog, which knows the application object it belongs to.The following interaction

diagram illustrates how the helprequest gets forwarded along the chain:

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at anApplication, which

can handle it or ignore it.The client that issued the request has no direct reference to the object that

ultimately fulfills it.

To forward the request along the chain, and to ensure receivers remain implicit, each object on the

chain shares a common interface for handling requests and for accessing its successor on the chain. For

example, the help system might define a HelpHandler classwith a corresponding HandleHelp

operation. HelpHandler can be theparent class for candidate object classes, or it can be defined as

amixin class. Then classes that want to handle help requests can makeHelpHandler a parent:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

The Button, Dialog, and Application classes use HelpHandler operations to handle help requests.

HelpHandler's HandleHelp operation forwards the request to the successor by default. Subclasses can

override thisoperation to provide help under the right circumstances; otherwisethey can use the default

implementation to forward the request.

Applicability
Use Chain of Responsibility when

 More than one object may handle a request, and the handler isn't knowna priori. The

handler should be ascertained automatically.

 You want to issue a request to one of several objects withoutspecifying the receiver

explicitly.

 The set of objects that can handle a request should be specifieddynamically.

Structure

A typical object structure might look like this:

Participants

 Handler (HelpHandler)

o Defines an interface for handling requests.

o (Optional) implements the successor link.

 ConcreteHandler (PrintButton, PrintDialog)

o Handles requests it is responsible for.

o Can access its successor.

o If the ConcreteHandler can handle the request, it does so; otherwise it forwards the request to its

successor.

 Client

o Initiates the request to a ConcreteHandler object on the chain.

Collaborations

 When a client issues a request, the request propagates along the chainuntil a ConcreteHandler

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

object takes responsibility for handling it.

Consequences

Chain of Responsibility has the following benefits and liabilities:

1. Reduced coupling.The pattern frees an object from knowing which other object handles a

request. An object only has to know that a request will be handled" appropriately." Both the receiver

and the sender have no explicit knowledge of each other, and an object in the chain doesn't havetoknow

about the chain's structure.

2. Added flexibility in assigning responsibilities to objects.Chain Rofesponsibility gives you added

flexibility in distributing responsibilities among objects. You can add or change responsibilities for

handling a request by adding to or otherwise changing the chain at run-time. You can combine this

suwbcitlhassing to specialize handlers statically.

3. Receipt isn't guaranteed.Since a request has no explicit receiver, there'sno guaranteeit'll be

handled—the request can fall off the end of the chain without ever being handled. A request can

also go unhandled whenthe chain is not configured properly.

Potential Drawbacks:

 Client can’t explicitly specify who handles a request

 No guarantee of request being handled (request falls off end of chain)

Implementation

Here are implementation issues to consider in Chain of Responsibility:

1. Implementing the successor chain.There are two possible ways to implement the successor

chain:

a. Define new links (usually in the Handler, but ConcreteHandlerscould define them instead).

b. Use existing links.

Our examples so far define new links, but often you can use existing object references to form the

successor chain. For example, parent references in a part-whole hierarchy can define a part's successor.

Awidget structure might already have such links.

Using existing links works well when the links support the chain you need. It saves you from defining

links explicitly and it saves space. But if the structure doesn't reflect the chain of responsibility your

application requires, then you'll have to define redundant links.

2. Connecting successors.If there are no preexisting references for defining a chain, then we will

introduce them ourself. In that case, the Handler not only defines the interface for the requests but

usually maintains the successor as well. That lets the handler provide a default implementation of

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

HandleRequest that forwards the request to the successor. If a ConcreteHandler subclass isn't

interested in the request, it doesn't have to override the forwarding operation, since its default

implementation forwards unconditionally.

Here's a HelpHandler base class that maintains a successor link:
Class HelpHandler {

Public:

HelpHandler (HelpHandler* s):

_successor(s) { }

Virtual void HandleHelp ();

Private:

HelpHandler* _successor;

};

Void HelpHandler::HandleHelp ()

{
if (_successor)

{

_successor->HandleHelp ();

} }

3. Representing requests: Different options are available for representing requests. In the simplest

form, the request is a hard-coded operation invocation, as in the case of HandleHelp. This is

convenient and safe, but you can forward only the fixed set of requests that the Handler class defines

An alternative is to use a single handler function that takes a request code as parameter.This

approach is more flexible, but it requires conditional statements for dispatching the request based

on its code. Moreover, there's no type-safe way to pass parameters, so they must be packed and

unpacked manually.Obviously this is less safe than invoking an operation directly.

To address the parameter-passing problem, we can use separate request objects that bundle request

parameters. A Request class can represent requests explicitly, and new kinds of requests can be defined

by subclassing. Subclasses can define different parameters.Handlers must know the kind of request to

access these parameters.

To identify the request, Request can define an access or function that returns an identifier for the class.

Alternatively, the receiver can use run-time type information if the implementation languages supports

it.Here is a sketch of a dispatch function that uses request objects to identify requests.A Get Kind

operation defined in the base Request class identifies the kind of request:

Void Handler::HandleRequest (Request* theRequest)

{

Switch (theRequest->GetKind ())

{

Case Help:

// cast argument to appropriate type

HandleHelp((HelpRequest*)theRequest);break;

Case Print:

HandlePrint ((PrintRequest*) theRequest);

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

// ...

break;

default:

// ...

break

;}}

Subclasses can extend the dispatch by overridingHandleRequest. The subclass handles only the

requests in which it's interested; other requests are forwarded to the parent class. In this way, subclasses

effectively extend the HandleRequest operation.

4. Automatic forwarding in Smalltalk.You can use the doesNotUnderstand mechanism in

Smalltalk to forward requests. Messages that have no corresponding methods are trapped in the

implementation of doesNotUnderstand, which can be overridden to forward the message to anobject's

successor.Thus it isn't necessary to implement forwarding manually; the classhandles only the request

in which it's interested and it relies on doesNotUnderstand to forward all others.

Sample Code

The following example illustrates how a chain of responsibility can handle requests for an on-line

help system. The help request is an explicit operation. We'll use existing parent references in the widget

hierarchy to propagate requests between widgets in the chain, and we'll define a reference in the Handler

class to propagate help requests between non widgets in the chain.

The HelpHandler class defines the interface for handlinghelp requests. It maintains a help topic and

keeps a reference to its successor on the chain of help handlers.The key operation is HandleHelp, which

subclassesoverride. HasHelp is a convenience operation for checking whether there is an associated

help topic.

Typedef int Topic;

const Topic NO_HELP_TOPIC = -1;

class HelpHandler {public:

HelpHandler(HelpHandler*=0,Topic= NO_HELP_TOPIC);

virtual bool HasHelp();

virtual void SetHandler(HelpHandler*, Topic);virtual void

HandleHelp();

private:

HelpHandler* _successor;

Topic _topic;

};
HelpHandler::HelpHandler (HelpHandler* h, Topic t) : _successor(h), _topic(t)

{ }

BoolHelpHandler::HasHelp()

{return_topic!= NO_HELP_TOPIC;

}

void HelpHandler::HandleHelp ()

{if (_successor != 0)

{

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

successor->HandleHelp();

}}

All widgets are subclasses of the Widget abstract class.Widget is a subclass of HelpHandler, since

alluser interface elements can have help associated with them.

Class Widget: public HelpHandler {

Protected:
Widget (Widget* parent, Topic t = NO_HELP_TOPIC);private:

Widget* _parent;

};

Widget::Widget (Widget* w, Topic t);

HelpHandler (w, t) {

_parent = w;

}

Known Uses

Several class libraries use the Chain of Responsibility pattern to handle user events. They use

different names for the Handler class, but the idea is the same:

• When the user clicks the mouse or presses akey, an event gets generated and passed along the

chain.MacApp [App89] and ET++ [WGM88] call it "EventHandler,"Symantec'sTCL library

[Sym93b] calls it "Bureaucrat," andNeXT's AppKit [Add94] uses thename "Responder."

• ET++ uses Chain of Responsibility to handle graphical update.

Related Patterns

Chain of Responsibility is often applied in conjunction with Composite .There a component's parent

can act as its successor.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Command

Intent

Encapsulate a request as an object, there by letting you parameterize clients with different requests,

queue or log requests, and support undoable operations.

Also Known As

Action, Transaction

Motivation

Sometimes it's necessary to issue requests to objects without knowing anything about the operation

being requested or the receiver of the request.

For example, user interface toolkits include objects like buttons and menus that carry out a request

in response to user input.But the toolkit can't implement the request explicitly in the button or menu,

because only applications that use the toolkit know what should be done on which object. As toolkit

designers we have no way of knowing the receiver of the request or the operations that will carry it

out.

The Command pattern lets toolkit objects make requests of unspecified application objects by turning

the request itself into an object. This object can be stored and passed around like other objects. The

key to this pattern is an abstract Command class, which declares an interface for executing operations.

In the simplest form this interface includes an abstract Execute operation. Concrete Command

subclasses specify a receiver-action pair by storing the receiver as an instance variable and by

implementing Execute to invoke the request. The receiver has the knowledge required to carry out the

request.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Menus can be implemented easily with Command objects. Each choice in a Menu is an instance of a

MenuItem class. An Application class createsthese menus and their menu items along with the rest

of the user interface.The Application class also keeps track of Document objects that a user hasopened.

The application configures each MenuItem with an instance of a concrete Commandsubclass. When

the user selects a MenuItem, theMenuItem calls Execute on its command, and Execute carries out

theoperation. MenuItems don't know which subclass of Command they use.Command subclasses store

the receiver of the request and invoke one or more operations on the receiver.

OpenCommand's Execute operation is different: it prompts the user for a document name, creates a

corresponding Document object, adds the document to the receiving application, and opens the

document.

Sometimes a MenuItem needs to execute a sequence of commands.For example; a MenuItem for

centering a page at normal size could be constructed from a CenterDocumentCommand object and

aNormalSize Command object. Because it's common to string commands together in this way, we can

define a MacroCommand class to allow aMenuItem to execute an open-ended number of commands.

Macro Command is a concrete Command subclass that simply executes a sequence

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

ofCommands. MacroCommand has no explicit receiver, because the commandsit sequences define

their own receiver.

In each of these examples, notice how the Command pattern decouplesthe object that invokes the

operation from the one having theknowledge to perform it. This gives us a lot of flexibility indesigning

our user interfaceWe can replace commands dynamically, which would be useful for implementing

context-sensitive menus. We can also support command scripting by composing commands into larger

ones. All of this is possible because the object that issues request only needs to knowhow to issue it; it

doesn't need to know how the request will be carried out.

Applicability

Use the Command pattern when you want to

 Parameterize objects to perform actions.

 Specify, queue, and execute requests at different times.

 Support undo. The Command's Execute operation can store state for reversing its effects in

the command itself.

 Support logging changes

 Structure a system around high-level operations

Participants

 Command

o Declares an interface for executing an operation.

 ConcreteCommand (PasteCommand, OpenCommand)

o Defines a binding between a Receiver object and an action.

o Implements Execute by invoking the corresponding operation(s) onReceiver.

 Client (Application)

o Creates a ConcreteCommand object and sets its receiver.

 Invoker (MenuItem)

o asks the command to carry out the request.

 Receiver (Document, Application)

o knows how to perform the operations associated with carrying outa request. Any

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

class may serve as a Receiver.

Collaborations

 The client creates a ConcreteCommand object and specifies its receiver.

 An Invoker object stores the ConcreteCommand object.

 The following diagram shows the interactions between these objects.It illustrates how Command

decouples the invoker from the receiver (and the request it carries out).

Consequences

The Command pattern has the following consequences:

1. Command decouples the object that invokes the operation from the one thatknows how to perform

it.

2. Commands are first-class objects. They can be manipulated and extended like any other object.

3. You can assemble commands into a composite command. An example is theMacroCommand

class described earlier

4. It's easy to add new Commands, because you don't have to changeexisting classes.

Implementation

Consider the following issues when implementing the Command pattern:

1. How intelligent should a command be?

A command can have a wide range of abilities. At one extreme it merely defines a binding between

a receiver and the actions that carryout the request. At the other extreme it implements everything

itselfwithout delegating to a receiver at all.

2. Supporting undo and redo.

Commands can support undo and redo capabilities if they provide a way to reverse their execution.

A ConcreteCommand class might need to store additional state to do so. This state can include

the Receiver object, which actually carries out operations inresponse to the request,

o the arguments to the operation performed on the receiver, and

o Any original values in the receiver that can changeas a result of handling the request. The

receiver must provideoperations that let the command return the receiver to its prior state.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

3 Avoiding error accumulation in the undo process.

4 Errors can accumulate as commands are executed, unexecuted, and reexecuted repeatedly so that an

application's state eventually diverges from original values. It may be necessary therefore to store more

information in the command to ensure that objects are restored to their original state.

5 Using C++ templates.For commands that

(1) Aren’t undoable

(2) Don’t require arguments, we can use C++ templates to avoid creating a Command subclass

forevery kind of action and receiver.

Sample Code

The C++ code showed here sketches the implementation of the Command classesin the Motivation

section. We'll define OpenCommand,PasteCommand, and MacroCommand. First theabstract

Command class:

class Command

{

public:

virtual ~Command();

virtual void Execute() = 0;

protected:

Command();

};

Open Command opens a document whose name is supplied by theuser. An Open Command must be

passed an Application object in its constructor. Ask User is an implementation routine that prompts

the user for the name of the document to open.

class OpenCommand : public Command {

public:OpenCommand(Application*);

virtual void Execute(); protected:

virtual const char* AskUser();private:

Application* _application;

char* _response;

};

OpenCommand::OpenCommand (Application* a) {

_application = a;

}

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Known Uses

 Perhaps the first example of theCommand pattern appears in a paper by Lieberman[Lie85].

 MacApp [App89] popularizedthe notion of commands for implementing undoable operations.

 ET++ [WGM88], InterViews [LCI+92], andUnidraw [VL90] alsodefine classes that follow

theCommand pattern.

 InterViews define Action abstract class thatprovides command functionality. It also defines

an ActionCallbacktemplate, parameterized by action method that cans instantiate

commandsubclasses automatically.

 The THINK class library [Sym93b] also uses commands to support undoable actions.

Commands in THINK are called "Tasks

 Unidraw's command objects are unique in that they can behave likemessages.

 Coplien describes how to implement functors, objects thatare functions, in C++[Cop92].

Related Patterns

A Composite (183)can be used to implement MacroCommands.

A Memento (316)can keep state the command requires to undo its effect.

A command that must be copied before being placed on the historylist acts as aPrototype (133).

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Interpreter

Intent

Given a language, define a represention for its grammar along with an interpreter that uses the

representation to interpret sentences in the language.

Motivation

If a particular kind of problem occurs often enough, then it might beworthwhileto express instances of

the problem as sentences in a simple language. Then you can build an interpreter that solves theproblem

by interpreting these sentences.

For example, searching for strings that match a pattern is a common problem. Regular expressions are

a standard language for specifying patterns of strings. Rather than building custom algorithms to

match each pattern against strings, search algorithms could interpret a regular expression that specifies

a set of strings to match.

The Interpreter pattern describes how to define a grammar for simple languages, represent sentences

in the language, and interpret these sentences.

Example: the pattern describes how to define a grammar for regular expressions, represent a particular

regular expression, and how to interpret that regular expression.

Suppose the following grammar defines the regular expressions:

expression::= literal | alternation | sequence | repetition |

'(' expression ')'

alternation::= expression '|' expression

sequence ::= expression '&' expression

repetition ::= expression '*'

literal::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*

The symbol expression is the start symbol, and literalis a terminal symbol defining simple words.

The Interpreter pattern uses a class to represent each grammar rule.Symbols on the right-hand side

of the rule are instance variables of these classes. The grammar above is represented by five classes:

an abstract class Regular Expression and its four subclassesLiteralExpression,

AlternationExpression, SequenceExpression, and Repetition Expression. The last three classes

define variables that hold sub expressions.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Every regular expression defined by this grammar is represented by an abstract syntax tree made up

of instances of these classes. For example, the abstract syntax tree represents the regular expression

Traning & (dogs|cats)*

We can create an interpreter for these regular expressions by defining the Interpret operation on each

subclass of Regular Expression.Interpret takes as an argument the context in which to interpret the

expression. The context contains the input string and information on how much of it has been matched

so far. Each subclass of Regular Expression implements Interpret to match the next part of the input

string based on the current context

Applicability

Use the Interpreter pattern when there is a language to interpret, andyou canrepresent statements in

the language as abstract syntax trees.The Interpreterpattern works best when

 The grammar is simple.

 Efficiency is not a critical concern. Structure

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Participants

AbstractExpression (RegularExpression)

o Declares an abstract Interpret operation that is common to all nodes in the abstract syntax tree.

 TerminalExpression (LiteralExpression)

o Implements an Interpret operation associated with terminal symbols in the grammar.

o an instance is required for every terminal symbol in a sentence.

 NonterminalExpression (AlternationExpression,RepetitionExpression, SequenceExpressions)

o One such class is required for every rule R ::= R1 R2 ... Rn in the grammar.

o Maintains instance variables of type AbstractExpression for each of the symbols R1 through Rn.

o Implements an Interpret operation for nonterminal symbols in the grammar. Interpret typically

calls itself recursively on the variables representing R1 through Rn.

 Context

o Contains information that's global to the interpreter.

 Client

o Builds (or is given) an abstract syntax tree representing a particular sentence in the language that

the grammar defines.

o Invokes the Interpret operation.

Collaborations

 The client builds (or is given) the sentence as an abstract syntaxtree of NonterminalExpression and

TerminalExpression instances. Thenthe client initializes the context and invokes the

Interpretoperation.

 Each NonterminalExpression node defines Interpret in terms ofInterpret on each subexpression.

The Interpret operation of eachTerminalExpression defines the base case in the recursion.

 The Interpret operations at each node use the context tostore and access the state of the interpreter.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Consequences

The Interpreter pattern has the following benefits and liabilities:

1. It's easy to change and extend the grammar.

2. Implementing the grammar is easy too.

3. Complex grammars are hard to maintain.

4. Adding new ways to interpret expressions.

Implementation

The following issues are specific to Interpreter:

1. Creating the abstract syntax tree.The Interpreter pattern doesn't explain how to create an

abstract syntax tree. In other words, it doesn't address parsing.The abstract syntax tree can be

created by a table-driven parser, by a hand-crafted parser, or directly by the client.

2. Defining the Interpret operation.You don't have to define the Interpret operation in the

expression classes. If it's common to create a new interpreter, then its better to use the Visitor

pattern to put Interpret in aseparate "visitor" object.

3. Sharing terminal symbols with the Flyweight pattern.Grammars whose sentences contain

many occurrences of a terminal symbol might benefit from sharing a single copy of that symbol.

Terminal nodes generally don't store information about their position in the abstract syntax tree.

Parent nodes pass them whatever context they need during interpretation. Hence there is a

distinction between shared state and passed-in state, and the Flyweight pattern applies.

Sample Code

Here are two examples.

 The first is a complete example in Small talk for checking whether a sequence matches a

regular expression.

 The second is a C++ program for evaluating Boolean expressions.

The regular expression matcher tests whether a string is in the language defined by the regular

expression. The regular expression is defined by the following grammar:

expression ::= literal | alternation | sequence | repetition |

'(' expression ')'

alternation ::= expression '|' expression

sequence ::= expression '&' expression

repetition ::= expression 'repeat'

literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

For example, the regular expression

(('dog ' | 'cat ') repeat & 'weather') matches the input string "dog dog cat weather".

To implement the matcher, we define the five classes The classSequence Expression has instance

variables expression1 and expression2 for its children in the abstract syntax tree. Alternation

Expression stores its alternatives in the instance variables alternative1 and alternative2, while

Repetition Expression holds the expression it repeats in itsrepetition instance

variable.LiteralExpression has a components instance variable that holds a list of. These represent

the literal string that must match the input sequence.

The match: operation implements an interpreter for the regular expression. Each of the classes defining

the abstract syntax tree implements this operation. It takes input State as an argument representing the

current stateof the matching process, having read part of the input string.

This current state is characterized by a set of input streams representing the set of inputs that the

regular expression could have accepted so far. The current state is most important to the repeat

operation.

Output state usually contains more states than its input state, because a RepetitionExpression can

match one, two, or many occurrences of repetition on the input state. The outputstates represent all

these possibilities, allowing subsequent elementsof the regular expression to decide which state is

the correct one.

Finally, the definition of match: forLiteralExpression tries to match its components against

eachpossible input stream. It keeps only those input streams that have amatch:

The nextAvailable: message advances the input stream. This is the only match: operation that

advances the stream.Notice how the state that's returned contains a copy of the inputstream, thereby

ensuring that matching a literal never changes theinput stream. This is important because each

alternative of anAlternationExpression should see identical copies ofthe input stream.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE

Known Uses

 The Interpreter pattern is widely used in compilers implemented with object-oriented

languages, as the Smalltalk compilers are.

 SPECTalkuses the pattern to interpret descriptions of input fileformats [Sza92].

 The QOCA constraint-solving toolk it uses it to evaluate constraints [HHMV92].

Related Patterns

 Composite (183): The abstract syntax tree is an instance of the Composite pattern.

 Flyweight (218) shows how to share terminal symbols within the abstract syntaxtree.

 Iterator (289): The interpreter can use an Iterator to traverse the structure.

 Visitor (366) canbe used to maintain the behavior in each node in the abstract syntaxtree in

one class.

7th sem Departmentt of CSE Page 20

Software Architecture and Design Patterns (18CS731)

Iterator

Intent

Provide a way to access the elements of an aggregate object sequentially without exposing its

underlying representation.

Also Known As

Cursor

Motivation

An aggregate object such as a list should give you a way to access its elements without exposing its

internal structure. Moreover, you might want to traverse the list in different ways, depending on what

you want to accomplish.

The key idea in this pattern is to take the responsibility for access and traversal out of the list object

and put it into an iterator object. The Iterator class defines an interface for accessing the list's

elements.An iterator object is responsible for keeping track of the current element; that is, it knows

which elements have been traversed already.

For example, a List class would call for a List Iterator with the following relationship between them:

Before you can instantiate ListIterator, you must supply the List to traverse.Once you have the List

Iterator instance, you can access the list's elements sequentially. The Current Item operation returns

the current element in the list, First initializes the current element tothe first element, Next advances

the current element to the nextelement, and Is Done tests whether we've advanced beyond the last

element—that is, we're finished with the traversal.

7th sem Department of CSE page: 21

Software Architecture and Design Patterns (18CS731)

Notice that the iterator and the list are coupled and the client mustknow thatit is a list that's traversed as

opposed to some otheraggregate structure. Hence the client commits to a particularaggregate structure.

It would be better if we could change the aggregateclass without changing client code. We can do this

by generalizing the iterator concept to support polymorphic iteration.

We define an AbstractList class that provides a common interfacefor manipulating lists. Similarly, we

need an abstract Iteratorclass that defines a common iteration interface. Then we can defineconcrete

Iterator subclasses for the different list implementations.As a result, the iteration mechanism becomes

independent of concreteaggregate classes.

The remaining problem is how to create the iterator. Since we want to write code that's independent of

the concrete List subclasses, we cannot simply instantiate a specific class. Instead, we make the

listobjects responsible for creating their corresponding iterator. This requires an operation like

CreateIterator through which clients request an iterator object.

Applicability

Use the Iterator pattern

 to access an aggregate object's contents without exposing its internal representation.

 to support multiple traversals of aggregate objects.

 to provide a uniform interface for traversing different aggregatestructures

7th sem Department of CSE page: 22

Software Architecture and Design Patterns (18CS731)

Structure

Participants

 Iterator

o Defines an interface for accessing and traversing elements.

 ConcreteIterator

o Implements the Iterator interface.

o Keeps track of the current position in the traversal of the aggregate.

 Aggregate

o Defines an interface for creating an Iterator object.

 ConcreteAggregate

o Implements the Iterator creation interface to return an instanceof the proper ConcreteIterator.

Collaborations

 A ConcreteIterator keeps track of the current object in the aggregate and can compute the

succeeding object in thetraversal.

Consequences

The Iterator pattern has three important consequences:

1. It supports variations in the traversal of an aggregate.Complex aggregates may be traversed in

many ways. For example, codegeneration and semantic checking involve traversing parse trees.

Codegeneration may traverse the parse tree inorder or preorder.Iterators makes it easy to change

the traversal algorithm.

2. Iterators simplify the Aggregate interface.Iterator's traversal interface obviates the need for a

similarinterface in Aggregate, thereby simplifying the aggregate's interface.

3. More than one traversal can be pending on an aggregate.An iterator keepstrack of its own

traversal state. Therefore you canhave more than onetraversal in progress at once.

Implementation

7th sem Department of CSE page: 23

Software Architecture and Design Patterns (18CS731)

Iterator has many implementation variants and alternatives. Someimportant onesfollow. The trade-

offs often depend on thecontrol structures your language provides.

1. Who controls the iteration? A fundamental issue is deciding which partycontrols the iteration,the

iterator or the client that uses the iterator.When the clientcontrols the iteration, the iterator is called

an externaliterator, and when the iterator controls it, the iterator is aninternal iterator.Clients that

use anexternal iterator must advance the traversal and request the nextelement explicitly from the

iterator. In contrast, the client handsan internal iterator an operation to perform, and the iterator

applies that operation to every element in the aggregate.

2. External iterators are more flexible than internal iterators. It's easy to compare two collections

for equality with an external iterator, for example, but it's practically impossible with

internaliterators. Internal iterators are especially weak in a language likeC++ that does not provide

anonymous functions, closures, orcontinuations like Smalltalk and CLOS. But on the other

hand,internal iterators are easier to use, because they define the iterationlogic for you.

3. Who defines the traversal algorithm? The iterator is not the only place wherethe traversal

algorithm canbe defined. The aggregate might define thetraversal algorithm anduse the iterator to

store just the state of theiteration. We callthis kind of iterator a cursor, since it merely pointstothe

current position in the aggregate. A client will invoke the Nextoperation on the aggregate with the

cursor as an argument, and theNext operation will change the state of thecursor.

4. If the iterator is responsible for the traversal algorithm, then it'seasy to use different iteration

algorithms on the same aggregate, andit can also be easier to reuse the same algorithm on

differentaggregates. On the other hand, the traversal algorithm might need toaccess the private

variables of the aggregate. If so, putting thetraversal algorithm in the iterator violates the

encapsulation of theaggregate.

5. How robust is the iterator?It can be dangerous to modify an aggregate while you're traversing

it.If elements are added or deleted from the aggregate,you might end upaccessing an element twice

or missing it completely. A simplesolution is to copy the aggregate and traverse the copy, but

that'stoo expensive to do in general.

6. A robust iterator ensures that insertions and removalswon't interfere with traversal, and it

7th sem Department of CSE page: 24

Software Architecture and Design Patterns (18CS731)

eidoes it without copying theaggregate. There are many ways to implement robust iterators.

Mostrely on registering the iterator with the aggregate. On insertion orremoval, the aggregate ther

adjusts the internal state of iteratorsit has produced, or it maintains information internally to

ensureproper traversal.

7. Kofler provides a good discussion of how robust iterators areimplemented in ET++ [Kof93].

Murray discusses theimplementation of robust iterators for the USL StandardComponents'List class

[Mur93].

8. Additional Iterator operations.The minimal interface to Iterator consists of the operations

First,Next, IsDone, and CurrentItem.4Someadditional operations might prove useful. For example,

orderedaggregates can have a Previous operation that positions the iteratorto the previous element.

A SkipTo operation is useful for sorted orindexed collections. SkipTo positions the iterator to an

objectmatching specific criteria.

9. Using polymorphic iterators in C++.Polymorphic iterators have their cost.They require the iterator

object to be allocated dynamically by a factory method. Hence they should be used only when there's

a need for polymorphism. Otherwise use concrete iterators, which can be allocated on the stack.

10. Iterators may have privileged access.An iterator can be viewed as an extension of the aggregate

that created it. The iterator and the aggregate are tightly coupled. We can express this close

relationship in C++ by making the iterator afriend of its aggregate. Then you don't need todefine

aggregate operations whose sole purpose is to let iteratorsimplement traversal efficiently.

11. Iterators for composites.External iterators can be difficult to implementover recursiveaggregate

structures like those in the Composite (183) pattern, because a position in the structure may span

many levels ofnested aggregates. Therefore an external iterator has to store a paththrough the

Composite to keep track of the current object. Sometimesit's easier just to use an internal iterator. It

can record thecurrent position simply by calling itself recursively, thereby storingthe path implicitly

in the call stack.

12. Null iterators.A NullIterator is a degenerate iterator that's helpful for handling boundary conditions.

7th sem Department of CSE page: 25

Software Architecture and Design Patterns (18CS731)

By definition, a NullIterator is always done with traversal; that is, its Is Done operation always

evaluates to true.NullIterator can make traversing tree-structured aggregates (likeComposites) easier.

Sample Code

We'll look at the implementation of a simple List class.We'll show two Iterator

implementations, onefor traversing the List infront-to-back order, and another for traversing

back-to-front

1. List and Iterator interfaces. First let's look at the part of the Listinterface that's relevant

toimplementing iterators. for the full interface.

template <class Item>class List {

public:

List(long size = DEFAULT_LIST_CAPACITY);long Count() const;

Item& Get(long index) const;

// ...

};

2. Iterator subclass implementations.ListIterator is a subclass of Iterator.

template <class Item>

class ListIterator : public Iterator<Item> {public:

ListIterator(const List<Item>* aList);virtual void First();

virtual void Next();

virtual bool IsDone() const; virtual Item CurrentItem() const;private:

const List<Item>* _list;long _current;

};
3. Using the iterators.Let's assume we have a List of Employee objects,and we would like to print

all the contained employees. TheEmployee class supports this with a Prin toperation. To print

the list, we define a PrintEmployees operation that takes an iterator as an argument. It uses the

iteratorto traverse and print the list.

4. Avoiding commitment to a specific list implementation. Let's consider how a skiplist

7th sem Department of CSE page: 26

Software Architecture and Design Patterns (18CS731)

variation of List would affectour iteration code. A SkipList subclass ofList must provide a

SkipListIterator thatimplements the Iterator interface. Internally, theSkipListIterator has to

keep more than just an index todo the iteration efficiently. But sinceSkipListIterator conforms

to theIterator interface, the PrintEmployees operationcan also be used when the employees are

stored in a SkipListobject.

5. Making sure iterators get deleted. To make life easier for clients,we'll provide an IteratorPtr

that acts as a proxy for aniterator. It takes care of cleaning up the Iterator objectwhen it goes

out of scope.

6. IteratorPtr is always allocated on thestack C++ automatically takes care of callingits

destructor, which deletes the real iterator.IteratorPtr overloads bothoperator-> andoperator*

in such a way that an IteratorPtr can betreated just like a pointer to an iterator. The members

ofIteratorPtr are all implemented inline; thus they can incur nooverhead.

7. An internal ListIterator.As a final example, let's look at a possible implementation of

aninternal or passive ListIterator class. Here the iteratorcontrols the iteration and it applies

an operation to each element.

Known Uses

Iterators are common in object-oriented systems. Most collection class libraries offer iterators in one

form or another.

Example:

Booch components [Boo94], apopular collection class library. It provides both a fixed size and

dynamically growing implementation of aqueue..

Polymorphic iterators and the cleanup Proxy described earlier are provided by the ET++ container

classes [WGM88].

ObjectWindows 2.0 [Bor94] provides a class hierarchy ofiterators for containers. You can iterate over

different containertypes in the same way. The ObjectWindow iteration syntax relies onoverloading

the postincrement operator ++ to advance theiteration.

Related Patterns

7th sem Department of CSE page: 27

Software Architecture and Design Patterns (18CS731)

Composite (183):Iterators are often applied to recursive structures suchasComposites.

Factory Method (121):Polymorphic iterators rely on factory methods to instantiate theappropriate

Iterator subclass.

Memento (316) isoften used in conjunction with the Iterator pattern. An iteratorcan use a memento

to capture the state of an iteration. The iteratorstores the memento internally.

Mediator

Intent

Define an object that encapsulates how a set of objects interact.Mediator promotesloose coupling by

keeping objects from referring toeach other explicitly, and it lets you vary their

interactionindependently.

Motivation

Object-oriented design encourages the distribution of behavioramong objects. Suchdistribution can

result in an object structurewith many connections between objects; in the worst case, every objectends

up knowing about every other.

As an example, consider the implementation of dialog boxes in agraphical userinterface. A dialog box

uses a window to present acollection of widgets such asbuttons, menus, and entry fields, asshown here:

Often there are dependencies between the widgets in the dialog. Forexample, abutton gets disabled

when a certain entry field is empty.Selecting an entry ina list of choices called a list boxmight change the

7th sem Department of CSE page: 28

Software Architecture and Design Patterns (18CS731)

contents of an entry field.Conversely, typing textinto the entry field might automatically select one or

morecorresponding entries in the list box. Once text appears in the entryfield, other buttons may

become enabled that let the user do somethingwith the text,such as changing or deleting the thing to

which it refers.

For example, FontDialogDirector can be the mediatorbetween the widgets in a dialog box. A

FontDialogDirector object knowsthe widgets in a dialog and coordinatestheir interaction. It acts as a

hub of communication for widgets:

The following interaction diagram illustrates how the objects cooperate to handle a change in a list

box's selection:

Here's the succession of events by which a list box's selection passesto an entry

field:

1. The list box tells its director that it's changed.

2. The director gets the selection from the list box.

3. The director passes the selection to the entry field.

4. Now that the entry field contains some text, the directorenables button(s)for initiating an

action (e.g., "demibold," "oblique").

7th sem Department of CSE page: 29

Software Architecture and Design Patterns (18CS731)

Here's how the FontDialogDirector abstraction can be integrated into aclasslibrary:

DialogDirector is an abstract class that defines the overall behavior ofa dialog. Clients call the

ShowDialog operation to display the dialog onthe screen.

CreateWidgets is an abstract operation for creating thewidgets of a dialog. WidgetChanged is another

abstract operation; widgets call it to inform their director that they have changed.DialogDirector

subclasses override CreateWidgets to create the properwidgets, and they override WidgetChanged to

handle the changes.

Applicability

Use the Mediator pattern when

 a set of objects communicate in well-defined but complex ways. Theresulting interdependencies

are unstructured and difficult tounderstand.

 reusing an object is difficult because it refers to and communicates with many other objects.

 a behavior that's distributed between several classes should

becustomizable without a lot of subclassing.

Structure

A typical object structure might look like this:

7th sem Department of CSE 30

Software Architecture and Design Patterns (18CS731)

Participants

 Mediator (DialogDirector)

o defines an interface for communicating with Colleague objects.

 ConcreteMediator (FontDialogDirector)

o implements cooperative behavior by coordinating Colleague objects.

o knows and maintains its colleagues.

 Colleague classes (ListBox, EntryField)

o each Colleague class knows its Mediator object.

o each colleague communicates with its mediator whenever it would haveotherwise communicated

with another colleague.

Collaborations

 Colleagues send and receive requests from a Mediator object. Themediatorimplements the

cooperative behavior by routing requestsbetween the appropriate colleague(s).

Consequences

The Mediator pattern has the following benefits and drawbacks:

1. It limits subclassing

2. It decouples colleagues.

3. It simplifies object protocols.

4. It abstracts how objects cooperate.

5. It centralizes control.

Implementation

The following implementation issues are relevant to the Mediatorpattern:

1. Omitting the abstract Mediator class.

2. Colleague-Mediator communication.

Sample Code

7th sem Dept of CSE 31

Software Architecture and Design Patterns (18CS731)

We'll use a DialogDirector to implement the font dialog box shown inthe Motivation.The abstract

class DialogDirector definesthe interface for directors.

class DialogDirector {public:

virtual ~DialogDirector();

virtual void ShowDialog();

virtual void WidgetChanged(Widget*) = 0;

protected:

DialogDirector();

virtual void CreateWidgets() = 0;

};

Widget is the abstract base class for widgets. Awidget knows its director.
class Widget {

public:

Widget(DialogDirector*);

virtual void Changed();

virtual void HandleMouse(MouseEvent& event);

// ...

private:

DialogDirector* _director;

};

Known Uses

Both ET++ [WGM88] and the THINK C class library [Sym93b] use director-like objects in dialogs

as mediators between widgets.

Related Patterns

Facade (208) differs from Mediator in that it abstracts a subsystem of objects to provide a more

convenient interface. Its protocol is unidirectional; that is, Facade objects make requests of the

subsystem classes but notvice versa. In contrast, Mediator enables cooperative behaviorthat colleague

objects don't or can't provide, and the protocol ismultidirectional.

Colleagues can communicate with the mediator using the Observer (326) pattern.

Memento

Intent

Without violating encapsulation, capture and externalize an object'sinternal state so that the object can

be restored to this state later.

Also Known As

7th sem Dept of CSE 32

Software Architecture and Design Patterns (18CS731)

Token

Motivation

Sometimes it's necessary to record the internal state of an object.This is required when implementing

checkpoints and undo mechanisms that let users back out of tentative operations or recover from errors.

You must save state information somewhere so that you can restore objects to their previous states.

Consider for example a graphical editor that supports connectivity between objects.A user can connect

two rectangles with a line, and the rectangles stay connectedwhen the user moves either of them. The

editor ensures that the line stretches to maintain the connection.

A well-known way to maintain connectivity relationships between objects is with a constraint- solving

system. We can encapsulate this functionality in a Constraint Solver object.Constraint Solver records

connections as they are made and generates mathematical equations that describe them. It solves these

equationswhenever the user makes a connection or otherwise modifies the diagram. Constraint Solver

uses the results of its calculations torearrange the graphics so that they maintain the proper

connections.

In general, the ConstraintSolver's public interface might beinsufficient to allow precise reversal of its

effects on otherobjects. The undo mechanism must work more closely withConstraintSolver to

reestablish previous state, but we should alsoavoid exposing the ConstraintSolver's internals to the

undo mechanism.

We can solve this problem with the Memento pattern. A memento is an object that stores a snapshot

of theinternal state of another object — the memento's originator. The undo mechanism will request

a mementofrom the originator when it needs to checkpoint the originator'sstate. The originator

initializes the memento with information thatcharacterizes its current state. Only the originator can

7th sem Dept of CSE 33

Software Architecture and Design Patterns (18CS731)

store andretrieve information from the memento—the memento is "opaque" toother objects.

1. In the graphical editor example just discussed, the ConstraintSolver can actas an originator. The

following sequence of events characterizes theundo process:

2. The editor requests a memento from the ConstraintSolver as aside-effect of the move operation.

3. The ConstraintSolver creates and returns a memento, an instance of aclass SolverState in this case.

A SolverState memento contains datastructures that describe the current state of the

ConstraintSolver'sinternal equations and variables.

4. Later when the user undoes the move operation, the editor gives theSolverState back to the

ConstraintSolver.

5. Based on the information in the SolverState, the ConstraintSolverchanges its internal structures to

return its equations and variablesto their exact previous state.

Applicability

Use the Memento pattern when

 a snapshot of (some portion of) an object's state must be saved sothat itcan be restored to that state later, and

 a direct interface to obtaining the state would exposeimplementation details and break the object's

encapsulation.

Structure

Participants

 Memento (SolverState)

o stores internal state of the Originator object. The memento may store as much or as little of the

originator's internal state as necessary at its originator's discretion.

o Protects against access by objects other than the originator.
o Mementos have effectively two interfaces. Caretaker sees a narrow interface to the Memento—it can only

pass the memento to other objects. Originator, in contrast, sees a wide interface,

 Originator (ConstraintSolver)

o creates a memento containing a snapshot of its current internalstate.

o uses the memento to restore its internal state.

 Caretaker (undo mechanism)

7th sem Dept of CSE 34

Software Architecture and Design Patterns (18CS731)

o is responsible for the memento's safekeeping.

o never operates on or examines the contents of a memento.

Collaborations

 A caretaker requests a memento from an originator, holds it for atime, andpasses it back to the originator, as

the followinginteraction diagram illustrates:

Sometimes the caretaker won't pass the memento back to the originator, because the originator might never

need to revert to an earlier state.

 Mementos are passive. Only the originator that created a memento willassign or

retrieve its state.

Consequences

The Memento pattern has several consequences:

1. Preserving encapsulation boundaries.Memento avoids exposing information that only an originator

shouldmanage but that must be stored neverthelessoutside the originator.The pattern shields other objects

from potentiallycomplex Originatorinternals, thereby preserving encapsulation boundaries.

2. It simplifies Originator.In other encapsulation-preserving designs, Originator keeps theversions of internal

state that clients have requested. That puts allthe storage management burden on Originator. Having

clientsmanage the state they ask for simplifies Originator and keepsclientsfrom having to notify originators

when they're done.

3. Using mementos might be expensive.Mementos might incur considerable overhead if Originator must

copylarge amounts of information to store inthe memento or if clientscreate and return mementos to the

originator often enough. Unlessencapsulating and restoring Originator state is cheap, the patternmight not

be appropriate. See the discussion of incrementality in theImplementation section.

4. Defining narrow and wide interfaces.It may be difficult in some languages to ensure that only

theoriginator can access the memento's state.

5. Hidden costs in caring for mementos.A caretaker is responsible for deleting the mementos it cares

for.However, the caretaker has no idea how much stateis in the memento.Hence an otherwise lightweight

caretaker might incur largestoragecosts when it stores mementos.

Implementation

7th sem Dept of CSE 35

Software Architecture and Design Patterns (18CS731)

Here are two issues to consider when implementing the Memento pattern:
1. Language support.Mementos have two interfaces: a wide one for originatorsand a narrowone for other

objects. Ideally the implementation languagewillsupport two levels of static protection. C++ lets you do

this bymakingthe Originator a friend of Memento and making Memento's wideinterfaceprivate. Only the

narrow interface should be declaredpublic. For example:

class State;

class Originator {

public:

Memento* CreateMemento();
void SetMemento(const Memento*);

// ...

private:

State* _state;
// internal data structures

// ...

};
class Memento

{public:

// narrow public interface

virtual ~Memento();
private:

// private members accessible only to Originator

friend class Originator;
Memento();

void SetState(State*);

State* GetState();
// ...

private:

State* _state;

// ...
};

2. Storing incremental changes.When mementos get created and passed back to their originator in

apredictable sequence, then Memento can save just theincrementalchange to the originator's internal state.

Sample Code

The graphical editor calls the command's Execute operationto move a graphical object and Unexecute to undo

the move.The command stores its target, the distance moved, and an instance ofConstraintSolverMemento, a

memento containing state from theconstraint solver.

class Graphic;

// base class for graphical objects in the graphical editor

class MoveCommand {
public:

MoveCommand(Graphic* target, const Point& delta);

void Execute();
Void Unexecute();

private:

7th sem Dept of CSE 36

Software Architecture and Design Patterns (18CS731)

ConstraintSolverMemento*

_state;Point _delta;

Graphic* _target;
};

Known Uses

The preceding sample code is based on Unidraw's support for connectivitythroughits CSolver class [VL90].

Collections in Dylan [App92] provide an iteration interface thatreflects theMemento pattern.

Dylan's collections have the notion of a"state" object, which is a memento that represents the state of

theiteration. Each collection can represent the current state of theiteration in any way it chooses; the

representation is completelyhidden from clients.

The memento-based iteration interface has two interesting benefits:

1. More than one state can work on the same collection.

2. It doesn't require breaking a collection's encapsulationto support iteration. The memento is only interpreted

by thecollection itself; no one else has access to it. Other approaches to iteration require breaking

encapsulation by making iterator classesfriends of their collection classes. The situation is reversed in

thememento-basedimplementation: Collection is a friend of theIteratorState.

The QOCA constraint-solving toolkit stores incremental information inmementos[HHMV92].

Related Patterns

Command (263): Commands can use mementos to maintainstate for undoable operations.

Iterator (289): Mementoscan be used for iteration as described earlier.

.

7th sem Dept of CSE 37

Software Architecture and Design Patterns (18CS731)

Observer

Intent

Define a one-to-many dependency between objects so that when oneobject changes state, all its

dependents are notified and updatedautomatically.

Also Known As

Dependents, Publish-Subscribe

Motivation

A common side-effect of partitioning a system into a collection ofcooperatingclasses is the need to

maintain consistency betweenrelated objects. You don'twant to achieve consistency by making

theclasses tightly coupled, because thatreduces their reusability.

Ex:Classes defining application data and presentations can be reusedindependently. They can work

together, too. Both a spreadsheet objectand bar chart object can depict information in the same

application dataobject using different presentations. The spreadsheet and the bar chartdon't know

about each other, thereby letting you reuse only the one youneed. But they behave as though they do.

When the user changes theinformation in the spreadsheet, the bar chart reflects the

changesimmediately, and vice versa.

Applicability

Use the Observer pattern in any of the following situations:

 When an abstraction has two aspects, one dependent on the other.Encapsulating these aspects in

separate objects lets you vary andreuse them independently.

 When a change to one object requires changing others, and youdon't knowhow many objects need

to be changed.

 When an object should be able to notify other objects without makingassumptions about who

these objects are. In other words, you don'twant these objects tightly coupled.

7th sem Dept of CSE 38

Software Architecture and Design Patterns (18CS731)

Structure

Participants

 Subject

o knows its observers. Any number of Observer objects may observe asubject.

o provides an interface for attaching and detaching Observer objects.

 Observer

o defines an updating interface for objects that should be notifiedof changes in a

subject.

 ConcreteSubject

o stores state of interest to ConcreteObserver objects.

o sends a notification to its observers when its state changes.

 ConcreteObserver

o maintains a reference to a ConcreteSubject object.

o stores state that should stay consistent with the subject's.

o implements the Observer updating interface to keep its stateconsistent with the subject's.

Collaborations

 ConcreteSubject notifies its observers whenever a changeoccurs that couldmake its observers' state

inconsistent with its own.

 After being informed of a change in the concrete subject, aConcreteObserverobject may query the

subject for information.ConcreteObserver uses this information to reconcile its state with thatof

the subject.

7th sem Dept of CSE 39

Software Architecture and Design Patterns (18CS731)

The following interaction diagram illustrates the collaborationsbetweena subject and two observers:

Note how the Observer object that initiates the change requestpostponesits update until it gets a

notification from the subject.Notify is not alwayscalled by the subject. It can be called by anobserver or

by another kindof object entirely. The Implementationsection discusses some common variations.

Consequences

The Observer pattern lets you vary subjects and observersindependently. You can reuse subjects

without reusing theirobservers, and vice versa. It lets you addobservers withoutmodifying the subject

or other observers.

Further benefits and liabilities of the Observer pattern include thefollowing:

1. Abstract coupling between Subject and Observer

2. Support for broadcast communication.

3. Unexpected updates.

Implementation

Several issues related to the implementation of the dependencymechanism arediscussed in this

section.

1. Mapping subjects to their observers.The simplest way for a subject to keeptrack of the observers

itshould notify is to store references to themexplicitly in thesubject. an associative look-up to

maintainthesubject-to-observer mapping.

2. Observing more than one subject.It might make sense in some situations foran observer to depend

onmore than one subject. For example, a spreadsheetmay depend on morethan one data source.

3. Who triggers the update?The subject and its observers rely on the notification mechanism tostay

7th sem Dept of CSEPage 40

Software Architecture and Design Patterns (18CS731)

consistent. But what object actually callsNotify to trigger theupdate? Here are two options:

a. Have state-setting operations on Subject call Notify after theychange the subject's state. The

advantage of this approach isthatclients don't have to remember to call Notify on the subject.

Thedisadvantage is that several consecutive operations will causeseveral consecutive updates,

which may be inefficient.

b. Make clients responsible for calling Notify at the right time.Theadvantage here is that the client can

wait to trigger the updateuntilafter a series of state changes has been made, therebyavoiding

needless intermediate updates. The disadvantage is thatclients havean added responsibility to

trigger the update. Thatmakes errors morelikely, since clients might forget to call Notify.

4. Dangling references to deleted subjects.Deleting a subject should notproduce dangling references

in itsobservers. One way to avoid danglingreferences is to make thesubject notify its observers as

it is deleted sothat they can resettheir reference to it. In general, simply deleting theobservers is

not an option, because other objects may reference them, orthey may beobserving other subjects as

well.

5. Making sure Subject state is self-consistent beforenotification.It's important to make sure Subject

state is self-consistent beforecallingNotify, because observers query the subject for its currentstate

in thecourse of updating their own state.

6. This self-consistency rule is easy to violate unintentionally whenSubject subclass operations call

inherited operations. For example,the notification in the following code sequence is trigged when

thesubject is in an inconsistent state:

void MySubject::Operation (int newValue) {

BaseClassSubject::Operation(newValue);

// trigger notification

_myInstVar += newValue;

// update subclass state (too late!)

}

7. Avoiding observer-specific update protocols: the pushand pull models. Implementations of the

Observer pattern often havethe subject broadcastadditional information about the change. Thesubject

passes this information as an argument to Update. The amountof information may varywidely.

At one extreme, which we call the push model, the subjectsends observersdetailed information about

the change, whether theywant it or not. At theother extreme is the pull model;the subject sends nothing

but the mostminimal notification, andobservers ask for details explicitly thereafter.

7th sem Department of CSE Page 41

Software Architecture and Design Patterns (18CS731)

8. Specifying modifications of interest explicitly.You can improve updateefficiency by extending the

subject'sregistration interface to allow registering observers only forspecific events of interest.

When such anevent occurs, the subjectinforms only those observers that have registeredinterest in

thatevent. One way to support this uses the notion ofaspectsfor Subject objects.

9. Encapsulating complex update semantics.When the dependency relationshipbetween subjects and

observers isparticularly complex, an object thatmaintains these relationships mightbe required. We

call such an object aChangeManager. Itspurpose is to minimize the work required to make observers

reflect achange in their subject.

ChangeManager has three responsibilities:

1. It maps a subject to its observers and provides an interface tomaintain this mapping. This

eliminates the need for subjects tomaintainreferences to their observers and vice versa.

2. It defines a particular update strategy.

3. It updates all dependent observers at the request of a subject.

The following diagram depicts a simple ChangeManager-based implementation ofthe Observer

pattern. There are two specialized ChangeManagers.SimpleChangeManager is naive in that it always

updates allobservers ofeach subject. In contrast, DAGChangeManager handles directed-

acyclicgraphs of dependencies between subjects and their observers. ADAGChangeManager is

preferable to a SimpleChangeManager whenan observerobserves more than one subject. In that case,

a change in twoor moresubjects might cause redundant updates. The DAGChangeManager ensuresthe

observer receives just one update. SimpleChangeManager isfinewhen multiple updates aren't an issue.

7th sem Department of CSE Page 42

Software Architecture and Design Patterns (18CS731)

ChangeManager is an instance of the Mediator (305) pattern. In general there is only one

ChangeManager, and it is knownglobally. The Singleton (144)pattern would beuseful here.

10. Combining the Subject and Observer classes.Class libraries written in languages that lack multiple

inheritance(like Smalltalk) generally don'tdefine separate Subject and Observerclasses but

combine their interfacesin one class. That lets youdefine an object that acts as both a subject and

an observer withoutmultiple inheritance. In Smalltalk, for example,the Subject andObserver

interfaces are defined in the root class Object,making themavailable to all classes.

Sample Code

An abstract class defines the Observer interface:
class Subject;

class Observer {

public:

virtual ~ Observer();

virtual void Update(Subject* theChangedSubject) = 0;protected:

Observer();

};

This implementation supports multiple subjects for each observer. Thesubjectpassed to the Update

operation lets the observerdetermine which subject changedwhen it observes more than one.

Known Uses

 The first and perhaps best-known example of the Observer pattern appearsin

 Smalltalk Model/View/Controller (MVC), the user interface framework in the

Smalltalkenvironment [KP88]. MVC's Model class plays the role ofSubject, whileView is the

base class for observers. Smalltalk,ET++ [WGM88], and the THINK classlibrary [Sym93b]

provide ageneral dependency mechanism by putting Subject and Observer interfacesin the

parent class for all other classes in the system.

 Other user interface toolkits that employ this pattern areInterViews [LVC89], the

AndrewToolkit [P+88], and Unidraw [VL90]. InterViewsdefines Observer and Observable

classes explicitly.Andrew calls them "view" and "dataobject," respectively. Unidrawsplits

graphical editor objects into View (forobservers) and Subjectparts.

Related Patterns

Mediator (305): Byencapsulating complex update semantics, the ChangeManager actsasmediator

between subjects and observers.

Singleton (144):The ChangeManager may use the Singleton pattern to make ituniqueand globally

7th sem Department of CSE Page 43

Software Architecture and Design Patterns (18CS731)

accessible.

7th sem Department of CSE Page 44

Software Architecture and Design Patterns (18CS731)

State

Intent

Allow an object to alter its behavior when its internal state changes.The object will appear to

change its class.

Also Known As

Objects for States

Motivation

Consider a class TCPConnection that represents a network connection.A TCPConnection object can

be in one of several different states: Established, Listening Closed. When a TCPConnection object

receivesrequests from other objects, it responds differently depending on itscurrent state. For

example, the effect of an Open request depends onwhether the connection is in its Closed state or its

Establishedstate. The State pattern describes how TCPConnection can exhibitdifferent behavior in

each state.

The class TCPConnection maintains a state object that represents the current state of the

TCPconnection. The class TCPConnection delegates all state-specificrequests to this state

object.TCPConnection uses its TCPStatesubclass instance to perform operations particularto the state

of theconnection.

Whenever the connection changes state, the TCPConnection objectchanges the state object it uses.

When the connection goes fromestablished to closed, for example, TCPConnection will replace

itsTCPEstablished instance with a TCPClosed instance.

7th sem Department of CSE Page 45

Software Architecture and Design Patterns (18CS731)

Applicability

Use the State pattern in either of the following cases:

 An object's behavior depends on its state, and it must change itsbehavior at run-time depending

on that state.

 Operations have large, multipart conditional statements that depend onthe object's state.

Structure

Participants

 Context (TCPConnection)

o Defines the interface of interest to clients.

o Maintains an instance of a ConcreteState subclass that defines thecurrent state.

o State (TCPState)

o Defines an interface for encapsulating the behavior associated with aparticular state of the

Context.

o ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)

o Each subclass implements a behavior associated with a state ofthe Context.

Collaborations

 Context delegates state-specific requests to the currentConcreteStateobject.

 A context may pass itself as an argument to the State objecthandling therequest. This lets the State

object accessthe context if necessary.

 Either Context or the ConcreteState subclasses can decide whichstatesucceeds another and under

what circumstances.

7th sem Department of CSE Page 46

Software Architecture and Design Patterns (18CS731)

Consequences

The State pattern has the following consequences:

1. It localizes state-specific behavior and partitionsbehavior for different state

2. It makes state transitions explicit.

3. State objects can be shared.

Implementation

The State pattern raises a variety of implementation issues:

1. Who defines the state transitions? The State pattern does not specify which participant defines the

criteria for state transitions. If the criteria are fixed, then they can be implemented entirely in the

Context. It is generally more flexible and appropriate, however, to let the State subclasses themselves

specify their successor state and when to make thetransition. This requires adding an interface to the

Context that lets State objects set the Context's current state explicitly.

2. A table-based alternative.In C++ Programming Style , Cargilldescribes another way to impose

structure on state-driven code:Heuses tables to map inputs to state transitions. For each state, atablemaps

every possible input to a succeeding state. In effect,this approach converts conditional code into a table

look-up.

The main advantage of tables is their regularity: You can change thetransition criteria by modifying

data instead of changing programcode.There are some disadvantages, however:

o A table look-up is often less efficient than a (virtual)functioncall.

o Putting transition logic into a uniform, tabular format makesthetransition criteria less explicit and

therefore harder tounderstand.

o It's usually difficult to add actions to accompany the statetransitions. The table-driven approach

captures the states andtheirtransitions, but it must be augmented to perform arbitrarycomputationon

each transition.

3. Creating and destroying State objects.A common implementation trade-off worth considering is

whether(1) to create State objects only when they areneeded and destroy themthereafter versus (2)

creating them ahead of timeand neverdestroying them.

4. Using dynamic inheritance.Changing the behavior for a particular request could be accomplishedby

changing the object's class at run-time, but this is not possiblein most object- oriented programming

languages. Objects in Selfcan delegate operations to other objects to achieve aform of dynamic

inheritance. Changing the delegation target atrun-time effectively changes the

7th sem Department of CSE Page 47

Software Architecture and Design Patterns (18CS731)

inheritance structure. Thismechanism lets objects change their behavior and amounts to changingtheir

class.

Sample Code

The following example gives the C++ code for the TCP connectionexample described in the

Motivation section. This example is asimplified version of the TCP protocol; it doesn't describe

thecomplete protocol or all the states of TCPconnections.8

First, we define the class TCPConnection, which provides aninterface fortransmitting data and

handles requests to change state.

class TCPOctetStream; class

TCPState;

Class TCPConnection {

public:

TCPConnection();

void ActiveOpen(); void

PassiveOpen(); void

Close();

void Send();

void Acknowledge();void

Synchronize();

TCPConnection keeps an instance of the TCPStateclass in the _state member variable. The

classTCPState duplicates the state-changing interface ofTCPConnection. Each TCPState operation

takes aTCPConnection instance as a parameter, lettingTCPState access data from TCPConnection

andchange the connection's state.

class TCPState {

public:

virtual void Transmit(TCPConnection*, TCPOctetStream*);virtual

void ActiveOpen(TCPConnection*);

virtual void PassiveOpen(TCPConnection*);virtual void

Close(TCPConnection*); virtual void

Synchronize(TCPConnection*);

virtual void Acknowledge(TCPConnection*);virtual void

Send(TCPConnection*);

protected:

void ChangeState(TCPConnection*, TCPState*);

};

Known Uses

 Johnson and Zweig [JZ91] characterize theState pattern and its application toTCP connection

protocols.

 This technique is used in both the HotDraw [Joh92] and Unidraw [VL90] drawingeditor

frameworks. It allows clients to define new kinds of tools easily. In HotDraw, the

DrawingController class forwards the requests to the current Tool object.In Unidraw, the

7th sem Department of CSE Page 48

Software Architecture and Design Patterns (18CS731)

corresponding classes are Viewer and Tool.

 Coplien's Envelope-Letter idiom [Cop92] is related toState. Envelope-Letter isa technique for

changing an object's class atrun-time. The State pattern is more specific, focusing on how to

dealwith an object whose behavior depends on its state.

Related Patterns

The Flyweight (218) pattern explains when and how State objects can be shared.

State objects are often Singletons (144).

7th sem Department of CSE Page 49

Software Architecture and Design Patterns (18CS731)

Strategy

Intent

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets

the algorithm vary independently from clients that use it.

Also Known As

Policy

Motivation

Many algorithms exist for breaking a stream of text into lines.Hard-wiring allsuch algorithms into the

classes that require themisn't desirable for severalreasons:

 Clients that need linebreaking get more complex if they includethelinebreaking code. That makes

clients bigger and harder to maintain,especially if they support multiple linebreaking algorithms.

Suppose a Composition class is responsible for maintaining andupdating the linebreaks of text

displayed in a text viewer.Linebreaking strategies aren't implemented by the class

Composition.Instead, they are implemented separatelyby subclasses of the abstractCompositor class.

Compositor subclasses implementdifferent strategies:

 SimpleCompositorimplements a simple strategy that determines linebreaksone at atime.

 TeXCompositorimplements the TeX algorithm for finding linebreaks. Thisstrategytries to optimize

linebreaks globally, that is, one paragraph at atime.

 ArrayCompositorimplements a strategy that selects breaks so that each rowhas a fixednumber of

items. It's useful for breaking a collection of iconsintorows, for example.

A Composition maintains a reference to a Compositor object. Whenever aCompositionreformats its

text, it forwards this responsibility to itsCompositor object. The client of Composition specifies

whichCompositor should be used by installing theCompositor it desires intothe Composition.

7th sem Dept of CSEPage 50

Software Architecture and Design Patterns (18CS731)

Applicability

Use the Strategy pattern when

 many related classes differ only in their behavior. Strategiesprovide away to configure a class with one

of many behaviors.

 you need different variants of an algorithm. For example, you might definealgorithms reflecting

different space/time trade-offs.Strategies can be used when these variants are implemented as a

classhierarchy ofalgorithms

 an algorithm uses data that clients shouldn't know about. Use theStrategy pattern to avoid exposing
complex, algorithm-specific datastructures.

 a class defines many behaviors, and these appear as multipleconditionalstatements in its operations.

Instead of manyconditionals, move related conditional branches into their ownStrategy class.

Structure

Participants

 Strategy (Compositor)

o declares an interface common to all supported algorithms. Contextuses this interface to call the

algorithm defined by a ConcreteStrategy.

 ConcreteStrategy (SimpleCompositor, TeXCompositor,ArrayCompositor)

o implements the algorithm using the Strategy interface.

 Context (Composition)

o is configured with a ConcreteStrategy object.

o maintains a reference to a Strategy object.

o may define an interface that lets Strategy access its data.

7th sem Dept of CSEPage 51

Software Architecture and Design Patterns (18CS731)

Collaborations

 Strategy and Context interact to implement the chosen algorithm. Acontextmay pass all data required

by the algorithm to the strategywhen the algorithm is called.

 A context forwards requests from its clients to its strategy. Clientsusually create and pass a

oncreteStrategy object to the context;thereafter, clients interact with the context exclusively. There

isoften a family ofConcreteStrategy classes for a client to choosefrom.

Consequences

The Strategy pattern has the following benefits and drawbacks:

1. Families of related algorithms.

2. An alternative to subclassing

3. Strategies eliminate conditional statements.

4. A choice of implementations.

5. Clients must be aware of different Strategies.

6. Communication overhead between Strategy and Context..

7. Increased number of objects.

Implementation

Consider the following implementation issues:

1. Defining the Strategy and Context interfaces.The Strategy and Contextinterfaces must give a

ConcreteStrategyefficient access to any data it needsfrom a context, and vice versa.

One approach is to have Context pass data in parameters to Strategyoperations—in other words,

take the data to the strategy. ThiskeepsStrategy and Context decoupled. On the other hand,

Context mightpassdata the Strategy doesn't need.

2. Strategies as template parameters.In C++ templates can be used to configure a class with a

strategy.This technique is only applicable if (1) the Strategycan be selectedat compile-time, and (2) it

does not have to be changed atrun-time.In this case, the class to be configured (e.g., Context)

isdefinedas a template class that has a Strategy class as aparameter:

template <class AStrategy>

class Context {

7th sem Dept of CSEPage 52

Software Architecture and Design Patterns (18CS731)

void Operation() { theStrategy.DoAlgorithm(); }

// ...

private:

AStrategy theStrategy;

};

The class is then configured with a Strategy class when it'isnstantiated:

class MyStrategy {public:

void DoAlgorithm();

};

Context<MyStrategy> aContext;

With templates, there's no need to define an abstract class that definesthe interface to the Strategy.

Using Strategy as atemplate parameter alsolets you bind a Strategy to itsContext statically, which can

increaseefficiency.

3. Making Strategy objects optional.The Context class may be simplified ifit's meaningful not tohave

a Strategy object. Context checks to see if ithas a Strategyobject before accessing it. If there is one,

then Context uses itnormally. If there isn't a strategy, then Context carries out defaultbehavior. The

benefit of this approach is that clients don't havetodeal with Strategy objects at all unless they don't

like thedefaultbehavior.

Sample Code

We'll give the high-level code for the Motivation example, which isbased on theimplementation of

Composition and Compositor classes inInterViews.

The Composition class maintains a collection ofComponent instances, which represent text and

graphicalelements in a document. A composition arranges component objects intolines using an

instance of a Compositor subclass, whichencapsulates a linebreaking strategy. Each component has

anassociated natural size, stretchability, and shrinkability. Thestretchability defines howmuch the

component can grow beyond itsnatural size; shrinkability is how muchit can shrink. Thecomposition

passes these values to a compositor, which usesthem todetermine the best location for linebreaks.

7th sem Dept of CSEPage 53

Software Architecture and Design Patterns (18CS731)

class Composition {public:

composition(compositor*);

void Repair();

private Compositor* _compositor;

component * _components;

int _componentCount;

int _lineWidth;

int* _lineBreaks;// the position of linebreaks in components

int _lineCount;// the number of lines

};

Known Uses

Both ET++ [WGM88] and InterViews use strategies to encapsulatedifferentlinebreaking algorithms

as we've described.

In the RTL System for compiler code optimization [JML92], strategies define different register

allocation schemes (RegisterAllocator) and instruction set scheduling policies(RISCscheduler,

CISCscheduler). This provides flexibility in targeting theoptimizer for different machine

architectures.

The ET++SwapsManager calculation engine framework computes prices fordifferent financial

instruments [EG92]. Its keyabstractions are Instrument and YieldCurve. Different instruments

areimplemented as subclasses of Instrument. YieldCurve calculatesdiscount factors, which determine

the present value of future cashflows. Both of these classes delegate some behavior to Strategyobjects.

The framework provides a family of ConcreteStrategy classesfor generating cash flows, valuing

swaps, and calculating discountfactors. You can create new calculation engines by

configuringInstrument and YieldCurve with the different ConcreteStrategy objects.This approach

supports mixing and matching existing Strategyimplementations as well as defining new ones.

The Booch components [BV90] use strategies as templatearguments. The Booch collection classes

support three different kinds ofmemory allocation strategies: managed, controlled, andunmanaged.

RApp is a system for integrated circuit layout [GA89, AG90].RApp must lay out and route wires that

connect subsystems on thecircuit. Routing algorithms in RApp are defined assubclasses of an abstract

Router class. Router is a Strategy class.

Related Patterns

7th sem Dept of CSEPage 54

Software Architecture and Design Patterns (18CS731)

Flyweight (218): Strategy objects often make good flyweights.

Template Method

Intent

Define the skeleton of an algorithm in an operation, deferring somesteps to subclasses. Template

Method lets subclasses redefinecertain steps of an algorithm without changing the

algorithm'sstructure.

Motivation

Consider an application framework that provides Application andDocument classes.The Application

class is responsible for openingexisting documents stored in an external format, such as a file.

ADocument object represents the information ina document once it'sread from the file.

Applications built with the framework can subclass Application andDocument tosuit specific needs.

For example, a drawing applicationdefines DrawApplication and DrawDocument subclasses; a

spreadsheetapplication defines SpreadsheetApplication and SpreadsheetDocumentsubclasses.

The abstract Application class defines the algorithm for opening andreading adocument in its

OpenDocument operation:

void Application::OpenDocument (const char* name)

{if (!CanOpenDocument(name)) {

// cannot handle this documentreturn;

}

Document* doc = DoCreateDocument();

if (doc) {

_docs->AddDocument(doc);

AboutToOpenDocument(doc);
doc->Open();

doc->DoRead();

}

}

OpenDcument defines each step for opening a document. It checks ifthe document can be opened,

creates the application-specific Documentobject, adds it to its set of documents, and reads the

7th sem Dept of CSEPage 55

Software Architecture and Design Patterns (18CS731)

Document from afile.

We call OpenDocument a template method. A template methoddefines an algorithmin terms of

abstract operations that subclassesoverride to provide concrete behavior. Application subclasses

definethe steps of the algorithm that check ifthe document can be opened(CanOpenDocument) and

that create the Document (DoCreateDocument).Document classes define the step that reads the

document (DoRead).The template method also defines an operation that lets Applicationsubclasses

know when the document is about to be opened(AboutToOpenDocument), in case they care.

By defining some of the steps of an algorithm using abstractoperations, thetemplate method fixes

their ordering, but it letsApplication and Document subclasses vary those steps to suit theirneeds.

Applicability

The Template Method pattern should be used

 to implement the invariant parts of an algorithm once and leave it uptosubclasses to implement

the behavior that can vary.

 when common behavior among subclasses should be factored and localizedina common class

to avoid code duplication. This is a good example

of"refactoring to generalize".

 to control subclasses extensions. You can define a template methodthat calls"hook" operations at

specific points,thereby permitting extensions only at those points.

Structure

Participants

 AbstractClass (Application)

o defines abstract primitive operations that concretesubclasses define to

implement steps of an algorithm.

o implements a template method defining the skeleton of an algorithm.The template method calls

primitive operations as wellas operationsdefined in AbstractClass or those of other objects.

 ConcreteClass (MyApplication)

7th sem Dept of CSEPage 56

Software Architecture and Design Patterns (18CS731)

o implements the primitive operations to carry outsubclass-specificsteps of the algorithm.

Collaborations

 ConcreteClass relies on AbstractClass to implement the invariant steps ofthe algorithm.

Consequences

Template methods are a fundamental technique for code reuse. They areparticularlyimportant in class

libraries, because they are the meansfor factoring out commonbehavior in library classes.

Template methods lead to an inverted control structure Template methods call the following kinds of

operations:

 concrete operations

 concrete AbstractClass operations

 primitive operations

 factory methods

 hook operations, which provide default behavior thatsubclasses can extend if

necessary. A hook operation often doesnothing by default.

It's important for template methods to specify which operations arehooks and which are abstract

operations.To reusean abstract class effectively,subclass writers must understand which operations are

designed foroverriding.

A subclass can extend a parent class operation's behavior byoverriding theoperation and calling the

parent operation explicitly:

void DerivedClass::Operation () {

// DerivedClass extended behavior

ParentClass::Operation();

}

Unfortunately, it's easy to forget to call the inherited operation.We can transformsuch an operation into

a template method to givethe parent control over how subclasses extend it. The idea is tocall a hook

operation from a template methodin the parent class.Then subclasses can then override this hook

operation:

void ParentClass::Operation () {

// ParentClass behavior

HookOperation();

}

HookOperation does nothing in ParentClass:

7th sem Dept of CSEPage 57

Software Architecture and Design Patterns (18CS731)

void ParentClass::HookOperation () { }

Subclasses override HookOperation to extend itsbehavior:

void DerivedClass::HookOperation () {

// derived class extension

}

Implementation

Three implementation issues are worth noting:

1. Using C++ access control.In C++, the primitive operations that a templatemethod calls can

bedeclared protected members. This ensures that they areonly called bythe template method.

Primitive operations that must be overridden aredeclared pure virtual. The template method itself

should notbeoverridden; therefore you can make the template method a nonvirtualmemberfunction.

2. Minimizing primitive operations.An important goal in designing templatemethods is to minimize

thenumber of primitive operations that a subclassmust override to fleshout the algorithm. The more

operations that needoverriding, the moretedious things get for clients.

3. Naming conventions.You can identify the operations that should be overridden by adding aprefix

to their names. For example, the MacApp framework for Macintoshapplications [App89] prefixes

template method nameswith "Do-":"DoCreateDocument", "DoRead", and so forth.

Sample Code

The following C++ example shows how a parent class can enforce aninvariant forits subclasses. The

example comes from NeXT'sAppKit [Add94]. Consider a classView that supportsdrawing on the

screen. View enforces the invariant that itssubclasses can draw into a view only after it becomes the

"focus,"which requirescertain drawing state to be set up properly.

We can use a Display template method to set up this state.View defines two concrete

operations,SetFocus and ResetFocus, that set up and clean upthe drawing state,respectively. View's

DoDisplayhook operation performs the actual drawing. DisplaycallsSetFocus before DoDisplay to

set up the drawingstate; Display calls ResetFocus afterwards torelease the drawing state.

void View::Display () {

SetFocus();

DoDisplay();

ResetFocus();

}

To maintain the invariant, the View's clients always callDisplay, and Viewsubclasses always override

7th sem Dept of CSEPage 58

Software Architecture and Design Patterns (18CS731)

Do Display.

DoDisplay does nothing in View:

void View::DoDisplay () { }

Subclasses override it to add their specific drawing behavior:

void MyView::DoDisplay () {

// render the view's contents

}

Known Uses

 Template methods are so fundamental that they can be found in almostevery abstract class.

Wirfs-Brock et al. [WBWW90, WBJ90] provide a good overview anddiscussion of template

methods.

Related Patterns

 Factory Methods (121) are often called by template methods. In the Motivationexample,the

factory method DoCreateDocument is called by the template methodOpenDocument.

 Strategy (349): Template methods use inheritance to vary part of analgorithm.Strategies use

delegation to vary the entire algorithm.

7th sem Dept of CSEPage 59

Software Architecture and Design Patterns (18CS731)

Visitor

Intent

Represent an operation to be performed on the elements of an objectstructure.

Motivation

Consider a compiler that represents programs as abstract syntax trees.It will need to perform

operations on abstract syntax trees for "static semantic" analyses like checking that all variables are

defined. we could use the abstract syntax trees for pretty-printing, program restructuring, code

instrumentation, and computing various metrics ofaprogram.

This diagram shows part of the Node class hierarchy. The problem here is thatdistributing all these

operations across the various nodeclasses leads to a system that's hard to understand, maintain,

andchange. It will be confusing to have pre-checking code mixed withpretty-printing code or flow

analysis code. Moreover,adding a newoperation usually requires recompiling all of these classes. It

would bebetter if each new operation could be added separately, and the nodeclasses were

independent of the operations that apply to them.

We can have both by packaging related operations from each class in aseparateobject, called a visitor,

and passing it toelements of the abstract syntax treeas it's traversed. When an element"accepts" the

visitor, it sends a request tothe visitor that encodesthe element's class. It also includes the element as

anargument. Thevisitor will then execute the operation for that element—theoperationthat used to be

in the class of the element.

For example, a compiler that didn't use visitors might type-check aprocedure by calling the

7th sem Dept of CSEPage 60

Software Architecture and Design Patterns (18CS731)

TypeCheck operation on its abstract syntaxtree. Each of the nodeswould implement TypeCheck by

calling TypeCheckon its components . If the compilertype-checked a procedure using visitors, then

itwould create aTypeCheckingVisitor object and call the Accept operation on theabstract syntax tree

with that object as an argument. Each of thenodes wouldimplement Accept by calling back on the

visitor: anassignment node calls VisitAssignment operation on the visitor, whilea variable reference

calls VisitVariableReference. What used to be theTypeCheck operation in class AssignmentNode is

now the VisitAssignmentoperation on TypeCheckingVisitor.

To make visitors work for more than just type-checking, we need anabstract parentclass NodeVisitor

for all visitors of an abstract syntaxtree. NodeVisitor mustdeclare an operation for each node class.

Anapplication that needs to computeprogram metrics will define newsubclasses of NodeVisitor and

will no longer need to add application-specific code to the node classes. The Visitor pattern

encapsulates the operations for each compilation phase in a Visitor associatedwith that phase.

With the Visitor pattern, you define two class hierarchies: one for theelementsbeing operated on

7th sem Dept of CSEPage 61

Software Architecture and Design Patterns (18CS731)

and one for the visitorsthat define operations on the elements . You create a new operationby adding

a new subclass to the visitor classhierarchy. As long as the grammar that the compiler accepts

doesn'tchange , we can addnew functionality simply by defining new NodeVisitor subclasses.

Applicability

Use the Visitor pattern when

 an object structure contains many classes of objects with differing interfaces, and you want to

perform operations on these objects that depend on their concrete classes.

 many distinct and unrelated operations need to be performed on objectsinan object structure, and you

want to avoid "polluting" theirclasses with these operations.

 Visitor lets you keep related operationstogether bydefining them in one class.

 the classes defining the object structure rarely change, but you oftenwant to define new

operations over the structure.

Structure

Participants

 Visitor (NodeVisitor)

o Declares a Visit operation for each class of ConcreteElement in theobject structure. The operation's

name and signature identifies theclass that sends the Visit request to the visitor. That lets thevisitor

determine the concrete class of the element being visited.Then the visitor can access the element

directly through its particular interface.

 ConcreteVisitor (TypeCheckingVisitor)

o Implements each operation declared by Visitor. Each operation implements a fragment of the

algorithm defined for the correspondingclass of object in the structure. ConcreteVisitor provides

the context for the algorithm and stores its local state. This stateoften accumulates results during

the traversal of the structure.

 Element (Node)

7th sem Dept of CSEPage 62

Software Architecture and Design Patterns (18CS731)

o defines an Accept operation that takes a visitor as an argument.

 ConcreteElement (AssignmentNode,VariableRefNode)

o implements an Accept operation that takes a visitor as an argument.

 ObjectStructure (Program)

o can enumerate its elements.

o may provide a high-level interface to allow the visitor to visitits elements.

o may either be a composite (see Composite (183)) or a collection suchas a list or a set.

Collaborations

 A client that uses the Visitor pattern must create a ConcreteVisitorobject and then traverse the

object structure, visiting each elementwith the visitor.

 When an element is visited, it calls the Visitor operation thatcorresponds to its class. The element

supplies itself as an argumentto this operation to let the visitor access its state, if necessary.

The following interaction diagram illustrates the collaborationsbetween an object structure, a

visitor, and two elements:

Consequences

Some of the benefits and liabilities of the Visitor pattern are as follows:

1. Visitor makes adding new operations easy.Visitors make it easy to addoperations that depend on

the components ofcomplex objects. You can definea new operation over an object structuresimply by

adding a new visitor.

2. A visitor gathers related operations and separates unrelated ones.Related behavior isn't spread

over the classes defining the objectstructure; it's localized in a visitor. Unrelated sets of behavior

arepartitioned in their own visitor subclasses. That simplifies both theclasses defining the elements

and the algorithms defined in thevisitors.

3. Adding new ConcreteElement classes is hard.The Visitor pattern makes it hard to add new

subclasses of Element. Eachnew ConcreteElement gives rise to a new abstract operation on Visitor

anda corresponding implementation in every ConcreteVisitor class. Sometimes adefault

implementation can be provided in Visitor that can be inheritedby most of the ConcreteVisitors, but

7th sem Dept of CSEPage 63

Software Architecture and Design Patterns (18CS731)

this is the exception rather thanthe rule.

4. Visiting across class hierarchies.An iterator canvisit the objects in astructure as it traverses them

by calling theiroperations. But an iteratorcan't work across object structures with different types of

elements.

5. Accumulating state.Visitors can accumulate state as they visit each element in the objectstructure.

Without a visitor, this state would be passed as extraarguments to the operations that perform the

traversal, or theymight appear as global variables.

6. Breaking encapsulation.Visitor's approach assumes that the ConcreteElement interface is

powerfulenough to let visitors do their job. As a result, the pattern oftenforces you to provide

public operations that access an element'sinternal state, which may compromise its encapsulation.

Implementation

Each object structure will have an associated Visitor class. This abstract visitor class declares a

VisitConcreteElement operation foreach class of ConcreteElement defining the object structure.

EachVisit operation on the Visitor declares its argument to be aparticular ConcreteElement, allowing

the Visitor to access theinterface of the ConcreteElement directly. ConcreteVisitor classesoverride

each Visit operation to implement visitor-specific behaviorfor the corresponding ConcreteElement

class.

The Visitor class would be declared like this in C++:

class Visitor {

public:

virtual void VisitElementA(ElementA*);

virtual void VisitElementB(ElementB*);

// and so on for other concrete elements

protected:

Visitor();

};

Here are two other implementation issues that arise when you apply theVisitorpattern:

1. Double dispatch. the Visitor pattern lets you add operations to classeswithout changing them.

Visitor achieves this by using a techniquecalled double-dispatch. It's a well-known technique. Infact,

some programming languages support it directly . Languages like C++ and Smalltalk supportsingle-

dispatch.

7th sem Dept of CSEPage 64

Software Architecture and Design Patterns (18CS731)

2. Who is responsible for traversing the object structure?

A visitor must visit each element of the object structure. The questionis, how does it get there? We

can put responsibility for traversal inany of three places: in the object structure, in the visitor, or in

aseparate iterator object.

Sample Code

We will use Visitor to define operations for computing the inventory of materials and the total cost for a

piece of equipment.The Equipment classes are so simple that using Visitor isn't really necessary, but

they make it easy to see what'sinvolved in implementing the pattern.

class Equipment {public:
virtual ~Equipment();

const char* Name() { return _name; }

virtual Watt Power(); virtual

Currency NetPrice();

virtual Currency DiscountPrice();

virtual void Accept(EquipmentVisitor&);protected:
Equipment(const char*);

private:

};

The Equipment operations return the attributes of a piece ofequipment, such as its power consumption

and cost. Subclasses redefine these operations appropriately for specific types of equipment

The abstract class for all visitors of equipment has a virtualfunction for eachsubclass of equipment, as

shown next. All of thevirtual functions do nothing bydefault.

class EquipmentVisitor {

public:

};

Known Uses

virtual ~EquipmentVisitor();

virtual void VisitFloppyDisk(FloppyDisk*);virtual

void VisitCard(Card*);

virtual void VisitChassis(Chassis*);virtual void

VisitBus(Bus*);

// and so on for other concrete subclasses of Equipmentprotected:

EquipmentVisitor();

 The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator.It's used

7th sem Dept of CSEPage 65

Software Architecture and Design Patterns (18CS731)

primarily for algorithms that analyze source code.

 IRIS Inventor [Str93]is a toolkit for developing 3-D graphics applications. Inventor represents

a three-dimensional scene as a hierarchy of nodes, each representing either a geometric object

or an attribute of one. Inventor does this using visitors called "actions."

 To make adding new nodes easier, Inventor implements adouble-dispatch scheme for C

 Mark Linton coined the term "Visitor" in the X Consortium'sFresco Application Toolkit

specification

Related Patterns

Composite (183): Visitors can be used to apply an operation over an objectstructure defined by the

Composite pattern.

Interpreter (274): Visitor may be applied to do the interpretation.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 1

Module-4

Interactive system and the MVC Architecture

4.1 Introduction
So far we have seen examples and case-studies involving relatively simple software

systems. This simplicity enabled us to use a fairly general step-by-step approach,

viz., specify the requirements, model the behaviour, find the classes, assign respon-

sibilities, capture class interactions, and so on. In larger systems, such an approach

may not lead to an efficient design and it would be wise to rely on the experience

of software designers who have worked on the problem and devised strategies to

tackle the problem. This is somewhat akin to planning our strategy for a game of

chess. A chess game has three stages—an opening, a middle game and an endgame.

While we are opening, the field is undisturbed and there are an immense number

of possibilities; toward the end there are few pieces and fewer options. If we are in

an endgame situation, we can solve the problem using a fairly direct approach

using first principles; to decide how to open is a much more complicated operation

and requires knowledge of ‘standard openings’. These standard openings have been

developed and have evolved along with the game, and provide a framework for the

player. Likewise, when we have a complex problem, we need a framework or struc-

ture within which to operate. For the problem of creating software systems, such a

structure is provided by choosing software architecture.

we start by describing a well-known software architecture (some- times referred

to as an architectural pattern) called the Model–View–Controller or MVC

pattern. Next we design a small interactive system using such an archi- tecture,

look at some problems that arise in this context and explore solutions for these

problems using design patterns. Finally, we discuss pattern-based solutions in

software development and some other frequently employed architectural patterns.

4.2 The MVC Architectural Pattern

The pattern divides the application into three subsystems: model, view, and

controller. The architecture is shown in Figure 4.1

The pattern separates the application object or the data, which is termed the

Model, from the manner in which it is rendered to the end-user (View) and

from the way in which the end-user manipulates it (Controller).

In contrast to a system where all of these three functionalities are lumped together

(resulting in a low degree of cohesion), the MVC pattern helps produce highly

cohesive modules with a low degree of coupling. This facilitates greater flexibility

and reuse. MVC also provides a powerful way to organize systems that support

multiple presentations of the same information.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 2

1: Model : The model, which is a relatively passive object, stores the data.

object can play the role of model.

2: View : The view renders the model into a specified format, typically

something that is suitable for interaction with the end user. For instance, if the

model stores information about bank accounts, a certain view may display

only the number of accounts and the total of the account balances.

3: Controller : The controller captures user input and when necessary, issues

method calls on the model to modify the stored data. When the model

changes, the view responds by appropriately modifying the display.

In a typical application, the model changes only when user

input causes the controller to inform the model of the changes. The view

must be notified when the model changes. Instance variables in the

controller refer to the model and the view. Moreover, the view must

communicate with the model, so it has an instance variable that points to the

model object. Both the controller and the view communicate with the user

through the UI. This means that some components of the UI are used by

the controller to receive input; others are used by the view to appropriately

display the model and some can serve both purposes (e.g., a panel can

display a figure and also accept points as input through mouseclicks). It is

important to distinguish the UI from the rest of the system: beginners often

mistake the UI for the view. This is easy error to make for two reasons. In

most systems, due to the nature of the desired look and feel and the

technologies available, there is a single window in which the entire

Figure 4.1 The model-view-controller architecture

application is housed. This means that there has to be a common subsystem that

provides the functionality needed both for the view and the user interface. The other

source of potential confusion is that the UI presents to the user an image of how the

system looks, and this can be mistakenly construed as the view. This interfacemust

include components that are in fact part of the controller (e.g., buttons for giving

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 3

commands). When we talk of MVC in the abstract sense, we are dealing with the

architecture of the system that lies behind the UI; both the view and the controller

are subsystems at the same level of abstraction that employ components of the UI

to accomplish their tasks. From a practical standpoint, however, we have a situation

where the view and the UI are contained in a common subsystem. For the purpose of

designing our system, we shall refer to this common subsystem as the view. The view

subsystem is therefore responsible for all the look and feel issues, whether they arise

from a human–computer interaction perspective (e.g., kinds of buttons being used)

or from issues relating to how we render the model. Figure 4.2 shows how we might

present the MVC architecture while accounting for these practical considerations.

User-generated events may cause a controller to change the model, or view, or

both. For example, suppose that the model stored the text that is being edited by the

end-user. When the user deletes or adds text, the controller captures the changes and

notifies the model. The view, which observes the model, then refreshes its display,

with the result that the end-user sees the changes he/she made to the data. In this

case, user-input caused a change to both the model and the view.

On the other hand, consider a user scrolling the data. Since no changes are made

to the data itself, the model does not change and need not be notified. But the view

now needs to display previously-hidden data, which makes it necessary for the view

to contact the model and retrieve information.

More than one view–controller pair may be associated with a model. Whenever

user input causes one of the controllers to notify changes to the model, all associated

views are automatically updated.

It could also be the case that the model is changed not via one of thecontrollers,

but through some other mechanism. In this case, the model must notify all associated

views of the changes.

Figure. 4.2 An alternate view of the the MVC architecture

The view–model relationship is that of a subject–observer. The model, as the

subject, maintains references to all of the views that are interested in observing it.

Whenever an action that changes the model occurs, the model automatically notifies

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 4

all of these views. The views then refresh their displays. The guiding principle here

is that each view is a faithful rendering of the model.

4.2.1 Examples
1. Suppose that in the library system we have a GUI screen using which users

can place holds on books. Another GUI screen allows a library staff member

to add copies of books. Suppose that a user views the number of copies,

number of holds on a book and is about to place a hold on the book. At the

same time, a library staff member views the book record and adds a copy.

Information from the same model (book) is now displayed in different

formats in the two screens.

2. A second example is that of a mail sever. A user logs into the server and

looks at the messages in the mailbox. In a second window, the user logs in

again to the same mail server and composes a message. The two screens

form two separate views of the same model.

3. Suppose that we have a graph-plot of pairs of (x, y) values. The

collection of data points constitutes the model. The graph-viewing software

provides the user with several output formats—bar graphs, line graphs, pie

charts, etc. When the user changes formats, the view changes without any

change to the model.

4.2.2 Implementation
As with any software architecture, the designer needs to have a clear idea about

how the responsibilities are to be shared between the subsystems. This task can be

simplified if the role of each subsystem is clearly defined.

• The view is responsible for all the presentation issues.

• The model holds the application object.

• The controller takes care of the response strategy.

The definition for the model will be as follows:

public class Model extends Observable {

// code

public void changeData() {

// code to update data

setChanged();

notifyObservers(changeInfo);

}

}

Each of the views is an Observer and implements the update method.

public class View implements Observer {

// code

public void update(Observable model, Object data) {

// refresh view using data

}

}

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 5

If a view is no longer interested in the model, it can be deleted from the list of

observers.

Since the controllers react to user input, they may send messages directly to the

views asking them to refresh their displays.

For each feature, we start with a detailed list of specifications, stated clearly

enough so that they can be classified as belonging to one of the three categories. In

general, there is always an initiation step for each operation; the manner in which

the user is to be shown the feature and the manner in which it is invoked are part

of the presentation. What the system should do when the request is made is a part

of the response strategy, and the controller manages this part of the show. This

strategy may involve interacting with the user in tandem with making changes to the

application object. What is needed from the user is part of the response strategy, but

how the system communicates with the user is a presentation issue. Changes to the

application object are made by invoking the methods of model. As the application

object is modified, the display needs to be modified to reflect the changes. Modifying

the display is again a matter for presentation.

Clearly, there is a lot of entanglement here between the three parts, and it is a

challenge to keep everything separate. The controller invokes the methods provided

by the model so that the separation is relatively easy to implement. There can be

confusion around drawing a line between the responsibilities of the view and the

controller for reasons explained earlier. Likewise, keeping the business logic away

from the display (or model–view separation) can be tricky in situations where there

is a close relationship between the stored data and the methods for rendering it. As

we design and implement a case-study in the following pages, we make decisions as

various situations arise. Although the philosophy behind this architecture is easily

stated, the details are best explained by example.

The approach we use to resolve this is to create a UI with functionality to serve the

purpose of both the view and the controller. Display components will be available

to the view, which invokes the appropriate display commands. Components which

capture events generated by user inputs are configured to pass on the message to

the appropriate subsystem; note that events for some operations (like scrolling) are

handled by the view, whereas others (like add, delete) are sent to the controller.

4.2.3 Benefits of the MVC Pattern
1. Cohesive modules: Instead of putting unrelated code (display and data) in the

same module, we separate the functionality so that each module is cohesive.

2. Flexibility: The model is unaware of the exact nature of the view or controller it

is working with. It is simply an observable. This adds flexibility.

3. Low coupling: Modularity of the design improves the chances that components

can be swapped in and out as the user or programmer desires. This also promotes

parallel development, easier debugging, and maintenance.

4. Adaptable modules: Components can be changed with less interference to the

rest of the system.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 6

5. Distributed systems: Since the modules are separated, it is possible that the three

subsystems are geographically separated.

4.3 Analysing a Simple Drawing Program

We now apply the MVC architectural pattern to the process of designing a

simple program that allows us to create and label figures. The purpose behind this

exercise is twofold:

• To demonstrate how to design with architecture in mind Designing with
architecture in mind requires that we start with a high-level decomposition of

responsibilities across the subsystems. The subsystems are specified by the archi-

tecture. The designer gets to decide which classes to create for each subsystem,

but the responsibilities associated with these classes must be consistent with the

purpose of the subsystem.

• To understand how the MVC architecture is employed Weshall follow the architec-
ture somewhat strictly, i.e., we will try to have three clearly delineated subsystems

for Model, View, and Controller. Later on, we will explore and discuss variations

on this theme.

As always, our design begins with the process of collecting requirements.

4.3.1 Specifying the Requirements

Our initial wish-list calls for software that can do the following.

1. Draw lines and circles.

2. Place labels at various points on the figure; the labels are strings. A separate

command allows the user to select the font and font size.

3. Save the completed figure to a file. We can open a file containing a figure and

edit it.

4. Backtrack our drawing process by undoing recent operations.

Compared to the kinds of drawing programs we have on the market, this looks too

trivial! Nonetheless, it is sufficient to show how the responsibilities can be

divided so that the MVC pattern can be applied. What we shall also see, later on, is

how new features can be added without disrupting the existing classes.

In order to attain this functionality, the software will interact with the user. We

need to specify exactly how this interaction will take place. It should, of course, be

user-friendly, fast, etc., but as in earlier examples, these non-functional requirements

will not be the focus of our attention. Without more ado, let us adopt the following

‘look and feel:’

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 7

 The software will have a simple frame with a display panel on which the

figure will be displayed, and a command panel containing the buttons.

There will be buttons for each operation, which are labeled like Draw

Line, Draw Circle, Add Label, etc. The system will listen to mouse-clicks

which will be employed by the user to specify points on the display

panel.

 The display panel will have a cross-hair cursor for specifying points

and a_ (underscore) for showing the character insertion point for

labels. The default cursor will be an arrow.

 The cursor changes when an operation is selected from the command

menu. When an operation is completed, the cursor goes back to the

default state.

 To draw a line, the user will specify the end points of the line with

mouse-clicks. To draw a circle, the user will specify two diametrically

opposite points on the perimeter. For convenient reference, the center of

each circle will be marked with a black square. To create a label, the

starting point will be specified by a mouse-click.

4.3.2 Defining the Use Cases
Wecan nowwrite the detailed use cases for each operation. The first one, for drawing

a line, is shown in Table4.1.

Actions performed by the actor Responses from the system

1. The user clicks on the Draw Line button in the

command panel

 2. The system changes the cursor to a cross-hair

3. The user clicks first on one end pointand

then on the other end point of the line to be

drawn

 4. The system adds a line segment with thetwo

specified end points to the figure being created.

The cursor changes to the default

Table 4.1 Use-case table for drawing a line

Actions performed by the actor Responses from the system

1. The user clicks on the Add Label button in the

command panel

 2. The system changes the cursor to a

cross-hair cursor

3. The user clicks at the left end point of the

intended label

 4. The system places a_ at the clicked location

 5. The system waits for the user response

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 9

5. The user types a character or clicks the

mouse at another location

 6. If the character is not a carriage return the

system displays the typed character followed

by a_, and the user continues with Step 5; in

case of a mouse-click, it goes to Step 4;

otherwise it goes to the default state

Table 4.2 Use-case table for Adding a Label

The use case for drawing a circle can be done analogously.

To give the system better usability, we allow for multiple labels to be added with

the same command. To start the process of adding labels, the user clicks on the

command button. This is followed by a mouse-click on the drawing panel, following

which the user types in the desired label. After typing in a label, a user can either click

on another point to create another label, or type a carriage return, which returns the

system to the default state. These details are spelled out in the use case in Table4.2.

The system will ignore almost all non-printable characters. The exceptions are the

Enter (terminate the operation) and Backspace (delete the most-recently entered

Character) keys. A label may contain zero or more characters.

We also have use cases for operations that do not change the displayed object. An

example of this would be when the user changes the font, shown in Table4.3.

The requirements call for the ability to savethe drawing and open and edit the saved

drawings. The use cases for saving, closing and opening files are left as exercises.

In order to allow for editing we need at least the following two basic operations:

selection and deletion. The use case Select an Item is detailed in Table4.4.

There are some details here that need to be fleshed out in later stages. We have

not specified how the system would indicate the change to the selection mode. We

could do this by changing the cursor or altering the display in some other way. This

use case requires that the display should indicate which items have been selected.

This can be done by drawing these items in a different colour.

It is possible that the user’s click does not fall on any item; in that case, the system

simply ignores the mouseclick and returns to the default mode.

Actions performed by the actor Responses from the system

1. The user clicks on the Change Font button in

the command panel

 2. The system displays a list of all the fonts

available

3. The user clicks on the desired font

 4. The system changes to the specified font and

displays a message to that effect

Table 4.3 Use-case table for Change Font

Software Architecture and Design Patterns (17IS72)

7th Semester, Department of ISE Page : 10

Actions performed by the actor Responses from the system

1. The user clicks on the Select button in the

command panel

 2. The system changes the display to the

selection mode

3. The user clicks the mouse on the drawing

 4. If the click falls on an item, the system adds

the item to its collection of selected items and

updates the display to reflect the addition. The

system returns the display to the default mode

Table 4.4 Use-case table Select an Item for

Deletion will be done by having a button in the GUI that the user can click;

whenever this button is clicked, all the selected items are deleted. The use case for

this is left as an exercise.

4.4 Designing the System
The process of designing this system is somewhat different from our earlier case

studies owing to the fact that we have selected an architecture. Our architecture

specifies three principal subsystems, viz., the Model, the View and the Controller.

We have a broad idea of what roles each of these play, and our first step is to define

these roles in the context of our problem. As we do this, we look at the individual use

cases and decide how the responsibilities are divided across the three subsystems.

Oncethis is takencare of, welook into thedetails ofdesigningeach ofthesubsystems.

4.4.1 Defining the Model

Our next step is to define what kind of an object we are creating. This is relatively

simple for our problem; we keep a collection of line, circle, and label objects. Each

line is represented by the end points, and each circle is represented by the X-

coordinates of the leftmost and rightmost points and the Y -coordinates of the top

and bottom points on the perimeter (see Figure. 4.3).

For a label, the model stores the coordinate’s starting position, the text, and the

style and size of the characters in the string. The collection is accessed by the view

when the figure is to be rendered on the screen. The model also provides mech

anisms to access and modify its collection objects. These would be methods like

addItem(Item), getItems(), etc.

4.4.2 Defining the Controller

The controller is the subsystem that orchestrates the whole show and the definition

of its role is thus critical. When the user attempts to execute an operation, the input

 is received by the view. The view then communicates this to the controller. This

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 11

communication can be effected by invoking the public methods of the controller. Let

us examine in detail the various implementation steps for the processes described in

the use cases.

Drawing a Line

1. The user starts by clicking the Draw line button, and in response, the system

changes the cursor. Clearly, changing the cursor should be a responsibility of the

view, since that is where we define the look and feel. This would imply that the

view system (or some part thereof) listen to the button click. The click indicates

that the user has initiated an operation that would change the model. Since such

operations have to be orchestrated through the controller, it is appropriate that the

Controller be informed. The controller creates a line object (with both ndpoints

unspecified).

Figure. 4.3 Representing a circle and a label

2. The user clicks on the display panel to indicate the first end point of the line. We

now need to designate a listener for the mouse clicks. This listener will extract

the coordinates from the event and take the necessary action. Both the view and

the controller are aware of the fact that a line drawing operation has been initi-

ated. The question then is, which of these subsystems should be responding to

the mouse-click? Having the controller listen directly to the mouse-clicks seems

to be more efficient, since that will reduce the number of method invocations.

However there are several reasons why this is not a good choice. First, the meth-

ods/interfaces (e.g., MouseListener in Java) to be implemented depend on

the manner in which the view is being implemented. This means that the con-

troller is not independent of the view, thus hurting reuse. A second reason is that

we can have multiple ways to input the points. For instance, when trying to draw

a precise figure, a user may prefer to specify the points as coordinates through

some kind of dialog, instead of clicking the mouse. These accommodations are

part of the look and feel, and do not belong in the controller. Finally, we have

the problem of reading and interpreting the input. In our particular situation,

this manifests itself as the process of mapping device coordinates to the image

coordinates. Most of the graphical display tools available nowadays use a coor-

dinate system where the origin corresponds to the top-left corner of the display

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 12

rectangle, with X coordinates increasing from left to right and Y coordinates

increasing from top to bottom (also known as device coordinates). Programs that

generate and use graphics often prefer the standard Cartesian coordinate system.

Thus we might have a situation where the model isbeing created with Cartesian

coordinates, whereas mouse clicks and graphical output must use device coordi-

nates and points have to be mapped from one system to the other. The conversion

of Cartesian coordinates to device coordinates is best done in the view since it

knows and is responsible for the nature and format of the output (points specified

as device coordinates). The reverse operation of converting device coordinates of

input points to Cartesian coordinates must also, therefore, be done by the view,

which means that the view must capture the input. Therefore, although a perfor-

mance penalty is incurred, we favour the implementation where the mouse-click

is listened to in the view. The view then communicates these coordinates to the

controller, after performing any transformation or mapping that may be needed.

At this point we need to decide how the system would behave during the period

between the clicks. For instance, should the point for the first click be highlighted

in any way? Since the use case does not specify anything, we can ignore this issue

for the time being, i.e., no change happens until both end points are clicked.

3. The user clicks on the second point. Once again, the view listens to the click and

communicates this to thecontroller. On receiving these coordinates, the controller

recognises that the line drawing is complete and updates the line object.

4. Finally, the model notifies the view that it has changed. The view then redraws

the display panel to show the modified figure.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 13

Figure. 4.4 Sequence of operations for drawing a line

This sequence of operations across the three subsystems can be captured by a high-

level sequence diagram as shown in Figure. 4.4. Note that unlike the sequence

diagrams in earlier chapters, this does not spell out all the classes involved or the

names of the methods invoked.

Drawing a Circle

The actions for drawing a circle are similar. However, we now have some additional

processing to be done, i.e., the given points on the diameter must be converted to the

the four integer values, as explained in Figure.4.3. Note that this requires a

mapping to convert the input to the form required by the model. This can be

performed in the controller, since these representations are equivalent.

Adding a Label

This operation is somewhat different due to the fact that the amount of data is not

fixed. The steps are as follows:

1. The user starts by clicking the Add Label button. In response, the system changes

the mouse-cursor, which, as before is the responsibility of the view.

2. The user clicks the mouse, and the system acknowledges the receipt of the mouse

click by placing a_ at the location. This would result in changing what the drawing

looks like. As decided earlier, we will maintain the property that the view is a

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 14

faithful rendering of the model. The view therefore notifies the controller that

the operation has been initiated, and the controller modifies the model. One issue

that we have to resolve is that of assigning the appropriate size and style to the

characters in the label. To implement this, we have to address the following:

• Which subsystem ‘remembers’ the current style and size? Since the user cannot
be expected to specify the size and style with each character, these have to be

stored somewhere. For our situation, we shall assume that these are stored in

the view and passed on to the controller when the label construction operation

is initiated.

• When do the changes to size and style take effect? To simplify our system, we
assume that these will take effect for the next label that is created. What this

means is that the style and size have to be uniform for any given label, and if a

change is made to any of these while we are in the process of creating a label,

these changes will not take immediate effect.

3. The user types in a character. Once again, the view listens to and gets the input from

the keyboard, which is communicated to the controller. Once again the controller

changes the model, which notifies the view.

4. The user clicks the mouse or enters a carriage-return. This is appropriately inter-

preted by the view. In both cases, the view informs the controller that the addition

of the label is complete. In case of a mouse click, the controller is also notified

that a new operation for adding a label has been initiated.

This sequence of steps is explained in Fig. 4.5. Note that the view interprets the key-

strokes: as per our specifications ordinary text is passed on directly to the controller,

control characters are ignored; carriage-return is translated into a command, etc.

All this is part of the way in which the system interacts with the user, and therefore

belongs to the view.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 15

Figure. 4.5 Sequence of operations for adding a label

Sharing Responsibilities between the View and the Controller

When we employ the MVC architecture, there is often a gray area between

the responsibilities of the controller and those of the view, particularly for the

kind of software discussed in this case-study. Issues that fall in this area can

be confusing to the beginner, particularly since widely varying opinions have

been expressed. Some of these issues have come up in this section and need

clarification.

Accepting user input In our approach above, all user input is received by

the view. Indeed, the view is the only mechanism through which the user can

interact and the view parses all the input that comes in. The idea here is that

the system as a whole be ‘UI agnostic’, i.e., the design of the system does not

depend on how the UI has been implemented.

Consider the situation where the user gives a command. This is done by a

button click. It is tempting to let the controller, or one of its components,

listen to the click and take action. However, this creates problems if the UI is

changed so that the same commands can instead be given by keystrokes. In such

a situation, a change in the UI, or even in the look and feel, can force changes in

the controller. In addition, there could be situations where the same operation

can be initiated in multiple ways. If the controller has to accommodate all of

these, it adds to the complexity of the controller and causes tight coupling.

Once an operation has been initiated, we have the issue of accepting the

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 16

data. Once again, while some designers have argued that the data be received

in the controller, this approach is fraught with problems. The data could be in

one of several formats. For instance, a UI designer might want to accommodate

for users to type in coordinate locations instead of clicking with the mouse.

(This could be important for drawing precise geometric figures.) Having the

controller deal with multiple formats is not desirable. A second, more serious

issue is that when the data needs some ‘correction’ to adjust for the display. For

instance, consider a situation where the figure is being drawn with Cartesian

coordinates due to the nature of the application. The mouse-click specifies

the value in coordinates with reference to the object that is being used for the

display (in Java, this would be the JPanel, ora JScrollPane), which will

have to be mapped to the Cartesian values. Doing this mapping in the controller

would mean exposing the controller to all the details of the components used

by the view. The important thing to keep in mind is that the view is providing

the user with several input mechanisms, and therefore should be responsible

for receiving and interpreting the data. The task of accepting and standardising

user input is therefore the responsibility of the view.

4.4.3 Selection and Deletion
The software allows us to delete lines, circles, or labels by selecting the item and

then invoking the delete operation. These shall be treated as independent oper-

ations since selection can also serve other purposes. Also, we can invoke selection

repeatedly so that multiple items can be selected at any given time.

When an item is selected, it is displayed in red, as opposed to black. The selection

is done by clicking with the arrow (default) cursor. Lines are selected by clicking on

one end point, circles are selected by clicking on the center, and labels are selected

by clicking on the label.

The steps involved in implementing this are as follows:

1. The user gives the command through a button click. This is followed by a mouse

click to specify the item. Both of these are detected in the view and communicated

to the controller.

2. In order to decide what action the controller must take, we need to figure out how

the system will keep track of the selected items. Since the view is responsible

for how these will be displayed (in red, for instance) the view must be able to

recognise these as selected when updating the display. Since the view gets the

items from the model, it would seem appropriate that the model have a mechanism

to flag the selected items. This can be done by having a tag field for each item,

or simply by moving the selected items to a separate container. We shall use the

latter.

3. The next step is to iterate through the (unselected) items in the model to find

the item (if any) that contains the point. Since the model is to be used strictly as

a repository for the data, the task of iterating through the items is done in the

controller, which then invokes the methods of the model to mark the item as

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 17

selected.

4. Model notifies view, which renders the unselected items in the default colour

(black) and the selected items in red. View gets an enumeration of the two lists

separately and uses the appropriate colour for each. Note that model only stores

a separate list of the selected items. It is the view that decides how the two lists

are to be rendered.

Deletion is a simpler operation. The button click is heard in the view and passed on

to the controller, which simply requests the model to delete all selected items.

4.4.4 Saving and Retrieving the Drawing
The use cases for the processes of saving and retrieving are simply described: the user

requests a save/retrieve operation, the system asks for a file name which the user provides
and the system completes the task. This activity can be partitioned between our

subsystems as follows:

1. The view receives the initial request from the user and then prompts the user to

input a file name.

2. The view then invokes the appropriate method of the controller, passing the file

name as a parameter.

3. The controller first takes care of any clean-up operation that may be required.

For instance, if our specifications require that all items be unselected before the

drawing is saved, or some default values of environment variables be restored,

this must be done at the stage. The controller then invokes the appropriate method

in the model, passing the file name as a parameter.

4. The model serializes the relevant objects to the specified file.

This completes the first step of distributing the responsibilities across the three sub-

systems. Note that unlike the earlier case studies, we did not look for classes and

methods and try to create a class interaction diagram right away. This would be fairly

typical when we are designing a larger software system with some advance notice

about the kind of architecture being employed. As we progress through the details,

we might also realise that our partitioning of responsibilities across the subsystems

may have to shift a little due to other considerations. This is not unusual, since the

architecture only gives us broad guidelines, and not a detailed design.

4.5 Design of the Subsystems

In this stage, the classes and their responsibilities are identified and we get a more

detailed picture of how the required functionality is to be achieved.

4.5.1 Design of the Model Subsystem
we know that the model should have methods for supporting the following

operations:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 18

1. Adding an item

2. Removing an item

3. Marking an item as selected

4. Unselecting an item

5. Getting an enumeration of selected items

6. Getting an enumeration of unselected items

7. Deleting selected items

8. Saving the drawing

9. Retrieving the drawing

The class diagram is shown in Figure 4.6.

The class Item represents a shape such as line or label and enables uniform

treatment of all shapes within a drawing.

Since the methods, getItems() and getSelectedItems() return an enu-

meration of a set of items.The view uses these methods to get the objects from the
model as an enumeration of the items.

Figure. 4.6 Class diagram for

model

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 19

The method updateView is used by the controller to alert the model that the

display must be refreshed. It is also invoked by methods within the model whenever

the model realizes that its data has changed. This method invokes a method in the

view to refresh the display.

4.5.2 Design of Item and Its Subclasses
Clearly, Itemwill have several subclasses, one for each shape. Each subclass will
store attributes that are relevant to the corresponding shape.

Rendering the items Rendering is the process by which the data stored in the

model is displayed by the view. Regardless of how we implement this, the actual

details of how the drawing is done are dependent on the following two

parameters:

 The technology and tools that are used in creating the UI For instance, we

are using the Java’s Swing package, which means that our drawing

panel is a JPanel and the drawing methods will have to be invoked on

the associated Graphics object.

 The item that is stored If a line is stored by its equation, the code for

drawing it would be very different from the line that is stored as two

end points.

The technology and tools are known to the author of the view, whereas the structure

of the item is known to the author of the items. Since the needed information is in

two different classes, we need to decide which class will have the responsibility for

implementing the rendering.

We have the following options:

Option 1 Let us say that the view is responsible for rendering, i.e., there is code in

the view that accesses the fields of each item and then draws them. Since the model

is storing these items in a polymorphic container, the view would have to query the

type of each item returned by the enumeration in order to choose the appropriate

method(s).

Option 2 If the item were responsible, each item would have a render method

that accesses the fields and draws the item. The problem with this is that the way an

object is to be rendered often depends on the tools that we have at our disposal. For

instance, consider the problem of rendering a circle: a circle is almost always drawn

as a sequence of short line segments. If the only method given in the toolkit is that for

drawing lines, the circle will have to be decomposed into straight lines. In addition

to the set of tools, there are other specific features that the technology has. Using the

Swing package in Java, for instance, implies that all the drawing is done by invoking

the methods on the Graphicsobject associated with the drawing panel.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 20

Figure. 4.7 The item class and its subclasses

At this point it appears that we are stuck between two bad choices! However, a

closer look at the first option reveals a fairly serious problem: we are querying each

object in the collection to apply the right methods. This is very much at odds with

the object-oriented philosophy, i.e., the methods should be packed with the data that

is being queried. This really means that the render method for each item should

be stored in the item itself, which is in fact the approach of the second option.

The structure of the abstract Item class and its subclasses are shown in Fig. 4.7.

Catering to Multiple UI Technologies

Swing is just one package for drawing. Before it was developed, there was (and still

is) the AWT (Abstract Windowing Toolkit) package available to Java programmers.

Let us assume that we have available two new toolkits, which are called, for want of

better names, HardUI and EasyUI. Essentially, what we want is that each item

has to be customised for each kind of UI, which boils down to the task of having a

different render method for each UI. One way to accomplish this is to use

inheritance.

To adapt the design to take care of the new situation, we have the Circle

class implement most of the functionality for circle, except those that depend on

the UI technology. We extend Circle to implement the SwingCircle class.

Similar extensions are now needed for handling the new technologies, HardUI and

EasyUI. Each of the three classes has code to draw a circle using the appropriate

UI technology. The idea is shown in Figure. 4.8.

In each case, the render method will decompose the circle into smaller compo-

nents as needed, and invoke the methods available in the UI to render each compo-
nent. In addition, each method would have to get any other contextual information.

For instance, with the Swing package, the render method would get the graphics

object from the view and invoke the drawOval method. The code for this could

look something like this:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 21

Figure. 4.8 Catering to multiple UI technologies

public class SwingCircle extends Circle {

// circle class for SwingUI

public void render() {

Graphics g = (View.getInstance()).getGraphics();

g.drawOval(/* parameters */);

}

}

The actual parameters for drawOval would depend on any mapping needed, but

would be computed using quantities stored in the Circle object. In addition to

the Graphics object, we may need several other pieces of information from the

context, such as the size of the drawing area, etc. The model could potentially employ
several types of items, each of which has a corresponding abstractclass.

Clearly, we need abstract classes for implementing the technology-independent

parts of lines (Line) and labels (Label). They are extended by classes such as

SwingLabel, SwingLine, EasyLabel, etc. This extension adds another six

classes. Each abstract class ends up with as many subclasses as the number of UIs

that we have to accommodate.

Thenumber of classesneeded to accommodate such a solution is given by:

Number of types of items × Number of UI packages

As is evident from the pictorial view of the resulting hierarchy (see Figure. 4.9),

this causes an unacceptable explosion in the number of classes.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 22

Figure. 4.9 Class explosion due to multiple UI implementations

Next, consider the situation where items are being created in the controller. Some

kind of conditional will be needed to decide which concrete class should be instan-

tiated, and this requires the code in the controller to be aware of the UI package that

we are using.

A third and more subtle point is that of software upgrades. Suppose we create

a version of our drawing program that supports the HardUI package and we use

that to create a figure. All the items created in the model will belong to the HardUI

subclasses, and can be used only with a system where the HardUI package is available.

If a later version of the software does not support HardUI (or we move the files to

a system that does not support it), we cannot access the old files anymore. If the

objects created in the model were independent of the type of UI, this problem could

be avoided.

Can all these problems be circumvented? What we have here are two subsystems

viz., the model and the view, each of which has its own classification viz., the types

of items and the types of UIs. We are creating objects that account for both of these

variations. Since the Item subclasses are being created in the model, the types of

items are an internal variation. On the other hand, the subclasses of Circle, Line,

and Label(such as HardCircle) are an externalvariation. Thestandardapproach

for this is to factor out the external variations and keep them as a separate hierarchy,

and then set up a bridge between the two hierarchies. This standard approach is

therefore called the bridge pattern.

Figure 4.10 describes the interaction diagram between the classes and visually

represents the bridge between the two hierarchies.

Since the only variation introduced in the items due to the different UIs is the

manner in which the items were drawn, this behaviour is captured in the UIContext

interface as shown in Figure. 4.11.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 23

Figure. 4.10 Interaction diagram for the bridge pattern

Using the Bridge Pattern

Figure. 4.11 UI Context interface

The intent of the bridge pattern is as follows: Decouple an abstraction from its

implementation so that two can vary independently. In our example, the abstraction is

the abstract class Item. The render method of this abstraction has different

implementations for different UIs. Using inheritance to allow for the different

implementations has the following drawbacks:

The abstractions and implementations cannot be modified and reused independently.

If the variations in the implementation are introduced from two independent sources,

keeping them in the same hierarchy could have a multiplicative effect on the number of

concrete classes.

 The bridge pattern takes care of these problems avoiding a permanent binding between

the two. This gives our design the following desirable properties:

 Both abstraction and implementation are independently extensible (UI Context and

items change indepently).

 Changes in the implementation do not affect the clients.

 Allows the implementation to be completely hidden from clients

 Reduces the number of classes.

 Multiple classes can share the same representation.

One of the guiding principles of object-oriented design states:

“Favour objects composition over class inheritance”.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 24

Note that the total number of classes is now reduced to

Number of types of items + Number of UI packages

Reflecting on the design The UIContext interface has a separate method for

drawing each of the shapes, thereby establishing a one-to-one mapping with the
shapes (circle, line, label). In general, such a one-to-one mapping is neither necessary
nor realistic.

Assume that we want to start supporting a new shape, say Triangle,

with the obvious semantics, in our drawing program. This is clearly an example of

a change that one should expect in a drawing program and, within reason, it should

impact as few interfaces and classes as possible. The class Triangle can then be

written as below.

public class Triangle extends Item {

private Line line1;

private Line line2;

private Line line3;

// Fields, constructor, and other methods

public void render() {

uiContext.draw(line1);

uiContext.draw(line2);

uiContext.draw(line3);

}

}

Similarly, we could support arbitrary polygons.

This demonstrates a couple of things. For one, it justifies the use of the bridge

pattern in our design. We are varying the Item hierarchy while requiring no

changes at all to the UIContext hierarchy.

In addition, it shows that the methods of UIContext can be quite ‘general
purpose’ and not tied exclusively to one specific shape.

Suppose we restrict UIContext to the following:

public interface UIContext {

public void draw(Point point1, Point point2); // for Line

public void draw(String string, RenderInformation information);

// for Label

}

As the reader might guess, draw with the two Point parameters renders a line

connecting the given points. The other draw method draws a sequence of characters

with information such as the font and font size specified in an as yet unimplemented
class named RenderInformation. Clearly, the Line class’s render method

can call the first draw method of UIContext and the label can be drawn by calling

the second draw method. We do not require any additional functionality, since any

shape can be drawn by decomposing it into a large number of lines. Since there is
no method to draw a circle, the Circle class must repeatedly invoke the first draw

method to render the circle.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 25

Employing option 1 Assume that rather than assigning the responsibility of draw-

ing an Item object to the object itself, we have the view draw all the items.

This could be accomplished by having methods such as draw(Line line) and

draw(Circle circle) in the view subsystem. Every view will potentially have

a different implementation of these methods. To render the items, a reference to the

current view is obtained and the appropriate draw method is then called on that

object.

While the methods that result from employing Option 1 are essentially the same

as we get using the bridge pattern, there is a difference in that the bridge pattern

employs a different class for each UI technology whereas Option 1 employs a set of

draw methods for each view.

4.5.3 Design of the Controller Subsystem
We structure the controller so that it is not tied to a specific view and is unique to

the drawing program.

The view receives details of a shape (type, location, content, etc.) via mouse clicks

and key strokes. As it receives the input, the view communicates that to the controller

through method calls. This is accomplished by having the fields for the following

purposes.

1. For remembering the model;

2. To store the current line, label, or circle being created. Since we have three shapes,
this would mean having three fields.

When the view receives a button click to create a line, it calls the controller method

makeLine. To reduce coupling between the controller and the view, we should

allow the view to invoke this method at any time: before receiving any points, after

receiving the first point, or after receiving both points. For this, the controller has

three versions of the makeLine method and keeps track of the number of points

independently of the view.

The execution of makeLine causes the line to be part of the model. The view

can set the endpoints of the line via the setLinePoint method.

The approach to add a label is similar to the one for adding a line. For a label,

remember that by pressing the backspace the user can delete a character, so we

provide a method removeCharacter for this purpose.

The controller also supplies a method (selectItem) that the view can call when

it receives the command to select an item. The controller searches through the entire

list of unselected items and determines if one of them is selected, and if so, it moves
the item from the list of unselected items to the list of selecteditems.

The rest of the methods are for deleting selected items and for storing and retriev-

ing the drawing and are fairly obvious. The class diagram is shown in Fig. 4.12.

To implement the saving and retrieval of files, the only objects to be serialized

are the list(s) of the Item objects, which is a straightforward process. However, one

of our stated goals is that of allowing a file to be retrievable even if the software has

 been modified so that we have a different version of the view, or if new featuresare

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 26

added. This means that in the new version of the software the concrete UIContext

may be different from the one that was used to create the items in the serialized list.

One solution to this could be to set uiContext to null in all the objects being

stored to disk and then reset these when the objects are read from disc. This solution

is inelegant and some what worrisome in that the objects are being modified when

saved and retrieved.

This is a reason why we have made Item an abstract class (instead of an interface).

This enables us to store UIContext as a static field in this class, along with the

We leave the circle implementation as an exercise, so we end up having only two fields in our

design.

Figure. 4.12 Controller class diagram

static method setUIContext to modify it. The UIContext object is thus not a

part of the object that is saved. This is consistent with the basic idea of the Bridge

pattern, which calls for separation between the items and the manner in which they

are rendered.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 27

4.5.4 Design of the View Subsystem

The separation of concerns inherent in the MVC pattern makes the view largely inde-

pendent of the other subsystems. Nonetheless, its design is affected by the controller

and the model in two important ways:

1. Whenever the model changes, the view must refresh the display, for which the

view must provide a mechanism.

2. The view employs a specific technology for constructing the UI. The correspond-

ing implementation of UIContextmust be made available to Item.

The first requirement is easily met by making the view implement the Observer

interface; the update method in the View class, shown in the class diagram in
Fig. 4.13, can be invoked for this purpose.

The issue regarding UIContext needs more consideration. The view consists of

a drawing panel, which extends JPaneland needs to be updated using the appro-

priate instance of UIContext. A major question that arises is as to how and when

this variable is to be set in Item. This can be achieved by having a public method,

say setUIContext, in the model that in turn invokes the setUIContext on
Item.

However, the time when we have to ensure that we are using the right instance of

UIContext is just before a drawing is rendered by the view. Also, it is the view

that knows which specific instance of UIContext is to be used in conjunction

with itself. A logical way of doing this, therefore, would be to keep track of the

appropriate UIContext in the view and invoke the setUIContext method in

the model just before refreshing the panel that displays the drawing. In the Swing

package, repainting is effected in the paintComponent method.

With multiple views, invoking the setUIContext method is problematic. Con-

sider: more than one view might have scheduled repainting the screen, which would

cause all of them to be executing paintComponent (or similar drawing method).

If one of the views updates the UIContext field in the model while another is in the

middle of painting the screen, chaos would result. This can be overcome by viewing
the repainting code as a criticalsection.

Accepting input We have already decided that the user will issue commands by

clicking on buttons. In the current implementation, we will assume that coordinate

information (endpoints of lines, starting point of labels, etc.) will be specified by

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 28

Figure. 4.13 Basic structure of the view class

Figure. 4.14 Organization of the classes to add labels

clicking on the panel. To catch these clicks, we need a class that acts as a mouse

listener, which in Java demands the implementation of the MouseListener4 inter-

face.

Commands to create labels, circles, and lines all require mouse listeners. Since

the behaviour of the mouse listener is dependent on the command, we know from

previous examples in the book that a truly object-oriented design warrants a separate

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 29

class for capturing the mouse clicks for each command. Since there is a one-to-one

correspondence between the mouse listeners and the drawing commands, we have

the following structure:

1. For each drawing command, we create a separate class that extends JButton.

For creating labels, for instance, we have a class called LabelButton. Every
button is its own listener.

2. For each class in (1) above, we create a mouse listener. These listeners invoke

methods in the controller to initiate operations.

3. Each mouse listener (in (2) above) is declared as an inner class of the correspond-

ing button class. This is because the different mouse listeners are independent

and need not be known to each other.

The idea is captured in Fig. 4.14. The class MouseHandler extends the Java class

MouseAdapter and is responsible for keeping track of mouse movements and

clicks and invoking the appropriate controller methods to set up the label. In addition

to capturing mouse clicks, the addition of labels requires the capturing of keystrokes.

The class KeyHandler accomplishes this task by extending KeyAdapter.

In another implementation, the view may choose to have other listeners that keep

track of events like resising the window, zooming-in, etc. These do not affect the

model and can be handled by redrawing the figure.

If the user abandons a particular drawing operation, we could be in a tricky

situation where there is more than one MouseHandler object receiving mouse

clicks and performing conflicting operations such as one object attempting to create

a line and another trying to add a label. To prevent this, we have two mechanisms in

place.

1. The KeyAdapter class also implements FocusListener to know when key
strokes cease to be directed to this class.

2. The drawing panel ensures that there is at most one listener listening to mouse

clicks, key strokes, etc. This is accomplished by overriding methods such as

addMouseListener and addKeyListener.

4.6 Getting into the Implementation

4.6.1 Item and Its Subclasses

This class Itemis abstract and its implementation is as follows:

import java.io.*;

import java.awt.*;

public abstract class Item implements Serializable {

protected static UIContext uiContext;

public static void setUIContext(UIContext uiContext) {

Item.uiContext = uiContext;

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 30

}

public abstract boolean includes(Point point);

protected double distance(Point point1, Point point2) {

double xDifference = point1.getX() - point2.getX();

double yDifference = point1.getY() - point2.getY();

return ((double) (Math.sqrt(xDifference * xDifference +

yDifference * yDifference)));

}

public void render() {

uiContext.draw(this);

}

}

The UIContext and its significance were discussed earlier in the context of using

the bridge pattern. The includes method is used to check if a given point selects
the item.

The Line class looks something like this:

public class Line extends Item {

private Point point1;

private Point point2;

public Line(Point point1, Point point2) {

this.point1 = point1;

this.point2 = point2;

}

public Line(Point point1) {

this.point1 = point1;

}

public Line() {

}

public boolean includes(Point point) {

return ((distance(point, point1) < 10.0) || (distance(point, point2)

< 10.0));

}

public void render() {

uiContext.draw(this);

}

// setters and getters for the two points

}

The class provides three constructors. A client may thus construct a Line object

without knowing either endpoint, or by specifying one point, or after gathering both
endpoints.

Unlike HardUI and EasyUI, which are ‘imaginary’ UI technologies, we can

readily construct an implementation of UIContext for the Java Swing technology.

public class SwingUI implements UIContext {

private Graphics g;

// Any other fields to hold context variables

public void setGraphics(Graphics graphics) {

g = graphics;

}

// any other methods to set context variables

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 31

public void draw(Circle circle) {

g.drawOval(/* parameters */);

}

public void draw(Line line) {

g.drawLine(/* parameters */);

}

public void draw(Label label){

g.drawString(/* parameters */);

}

public void draw(Item item) {

// error message

}

}

As was the case earlier, draw needs information from both the UI and the item. The

UI information is obtained within the context object and the item is passed in as a

reference. The only difference is that instead of doing all this in the render method

of Item, we invoke the appropriate draw method on the UI object with which the

view has been configured.

4.6.2 Implementation of the Model Class

The class maintains itemList and selectedList, which respectively store the

items created but not selected, and the items selected. The constructor initialises
these containers.

public class Model extends Observable {

private Vector itemList;

private Vector selectedList;

public Model() {

itemList = new Vector();

selectedList = new Vector();

}

// other methods

}

The setUIContext method in the model in turn invokes the setUIContext

on Item.

public static void setUIContext(UIContext uiContext) {

Model.uiContext = uiContext;

Item.setUIContext(uiContext);

}

As an Observable, the model notifies all of the views when it needs to inform

them of changes. We have seen that this approach allows us to change UIContext

dynamically, and also supports the displaying of multiple views simultaneously,

where each view is using a different UIContext.

At the moment, we handle the drawing of items (including a possibly ‘incomplete’

one), especially labels, by having a method updateView in the model, which is

called by the controller at appropriate moments, for example after each character is

read in from the keyboard. The method simply asks that the view be refreshed.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 32

public void updateView() {

setChanged();

notifyObservers(null);

}

The addItem method is simple: it just stores the item in itemList and redraws
the screen.

public void addItem(Item item) {

itemList.add(item);

updateView();

}

The class also provides a method to delete an item.

public void removeItem(Item item) {

itemList.remove(item);

updateView();

}

When an item is selected by the user, the model marks it as selected by transferring

the item from itemList to selectedList as below.

public void markSelected(Item item) {

if (itemList.contains(item)) {

itemList.remove(item);

selectedList.add(item);

updateView();

}

}

Selected items are deleted using the deleteSelectedItems.

public void deleteSelectedItems() {

selectedList.removeAllElements();

updateView();

}

The getItemsmethod is used bythe controller to determine which item is selected.
The view uses the same method to render the items.

public Enumeration getItems() {

return itemList.elements();

}

Implementation of the Controller Class

The class must keep track of the current shape being created, and this is accomplished

by having the following fields within the class.

private Line line;

private Label label;

When the view receives a button click to create a line, it calls one of the following

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 33

controller methods. The controller supplies three versions of the makeLine method

and keeps track of the number of points independently of the view.

public void makeLine() {

makeLine(null, null);

pointCount = 0;

}

public void makeLine(Point point) {

makeLine(point, null);

pointCount = 1;

}

public void makeLine(Point point1, Point point2) {

line = new Line(point1, point2);

pointCount = 2;

model.addItem(line);

}

The variables pointCount and model are both fields within the Controller

class that respectively keep track of the number of points received and the instance

of the Model class.

The execution of makeLine causes the line to be part of the model. The view
can set the endpoints of the line via the following method.

public void setLinePoint(Point point) {

if (++pointCount == 1) {

line.setPoint1(point);

} else if (pointCount == 2) {

pointCount = 0;

line.setPoint2(point);

}

model.updateView();

}

After it receives each end-point, the controller calls the model’s updateView
method to inform it that the view should be updated.

The approaches to draw a circle and add a label are similar. For a label, remember

that by pressing the backspace the user can delete a character. So we provide a method

removeCharacter for this purpose.

The following method is called by the view when it receives the command to

select an item. The controller searches through the entire list of unselected items and

determines if one of them is selected, and if so, it moves the item from the list of

unselected items to the list of selected items.

public void selectItem(Point point) {

Enumeration enumeration = model.getItems();

while (enumeration.hasMoreElements()) {

Item item = (Item)(enumeration.nextElement());

if (item.includes(point)) {

model.markSelected(item);

break;

}

}

}

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 34

Implementation of the View Class

The view maintains two panels: one for the buttons and the other for drawing the

items.

public class View extends JFrame implements Observer {

private JPanel drawingPanel;

private JPanel buttonPanel;

// JButton references for buttons such as draw line, delete, etc.

private class DrawingPanel extends JPanel {

// code to redraw the drawing and manage the listeners

}

public View() {

// code to create the buttons and panels and put them in the JFrame

}

public void update(Observable model, Object dummy) {

drawingPanel.repaint();

}

}

The code to set up the panels and buttons is quite straightforward, so we do not dwell

upon that.

The DrawingPanel class overrides the paintComponent method, which

is called by the system whenever the screen is to be updated. The method displays
all unselected items by first obtaining an enumeration of unselected items from the

model and calling the render method on each. Then it changes the colour to red

and draws the selected items.

public void paintComponent(Graphics g) {

model.setUI(NewSwingUI.getInstance());

super.paintComponent(g);

(NewSwingUI.getInstance()).setGraphics(g);

g.setColor(Color.BLUE);

Enumeration enumeration = model.getItems();

while (enumeration.hasMoreElements()) {

((Item) enumeration.nextElement()).render();

}

g.setColor(Color.RED);

enumeration = model.getSelectedItems();

while (enumeration.hasMoreElements()) {

((Item) enumeration.nextElement()).render();

}

}

The DrawingPanel class also overrides the addMouseListener, addKey-

Listener, and addFocusListener methods. This is to ensure that there is at
most one listener for each type of event on the drawing panel.

private MouseListener currentMouseListener;

public void addMouseListener(MouseListener newListener) {

removeMouseListener(currentMouseListener);

currentMouseListener = newListener;

super.addMouseListener(newListener);

 }

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 35

When this button is clicked, an instance of MouseHandler is created, and it

becomes the sole listener of mouse clicks. MouseHandler overrides the

mouseClicked method to determine the starting point of the label. Besides asking

the controller to set up a Label object with the given starting point, the code makes

the drawing panel receive further button clicks and keyboard events. Also note that

the KeyHandler is a FocusListener as well, which lets it know when it longer

receives keyboard input.

public void mouseClicked(MouseEvent event) {

view.setCursor(new Cursor(Cursor.TEXT_CURSOR));

Controller.instance().makeLabel(event.getPoint());

drawingPanel.requestFocusInWindow();

drawingPanel.addKeyListener(keyHandler);

drawingPanel.addFocusListener(keyHandler);

}

In its keyTyped method, KeyHandler transmits all printable characters to the

Label object via the controller. The keyPressed method distinguishes between

the enter and backspace keys. For the former, it stops listening to mouse clicks and
keyboard events. If the backspace is pressed, the label is made to delete the last typed
character.

public void keyTyped(KeyEvent event) {

char character = event.getKeyChar();

if (character >= 32 && character <= 126) {

Controller.instance().addCharacter(event.getKeyChar());

}

}

public void keyPressed(KeyEvent event) {

if (event.getKeyCode() == KeyEvent.VK_ENTER) {

view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

drawingPanel.removeMouseListener(mouseHandler);

drawingPanel.removeKeyListener(keyHandler);

drawingPanel.repaint();

} else if (event.getKeyCode() == KeyEvent.VK_BACK_SPACE) {

Controller.instance().removeCharacter();

}

}

If the user terminates label creation by clicking on a button, as opposed to hitting the

Enter key, the system executes the focusLost method of KeyHandler, which

properly ends the command.

public void focusLost(FocusEvent event) {

view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

drawingPanel.removeMouseListener(mouseHandler);

drawingPanel.removeKeyListener(keyHandler);

drawingPanel.repaint();

}

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 36

Finally, just before it refreshes the screen, the view sets up UIContext within the
model appropriately:

public void paintComponent(Graphics g) {

model.setUI(NewSwingUI.getInstance());

// rest of the code not shown

}

The Driver Program

The driver program sets up the model. In our implementation the controller is inde-

pendent of the UI technology, so it can work with any view. The view itself uses the

Swing package and is an observer of the model.

public class DrawingProgram {

public static void main(String[] args){

Model model = new Model();

Controller.setModel(model);

Controller controller = new Controller();

View.setController(controller);

View.setModel(model);

View view = new View();

model.addObserver(view);

view.show();

}

}

A Critique of Our Design

The partial design of the view and the model are quite robust. We have examined

some of the issues to be taken care of earlier on, and the implementation takes them

into consideration. The controller appears to be quite straightforward, and we simply

need to add methods to handle all the operations.

Let us see how the design stands up to the task of adding a new operation, say,to

draw a polygon.

1. We need to provide a new button which informs the user that the new operation

is available. We also should create a mouse handler to handle mouse clicks, etc.

These changes are relatively obvious and clearly unavoidable. Even then, note

that most of the classes in the view are left unchanged.

2. The model is not affected by adding new types of items, operations or new UIs.

3. The UIContext interface does not have to be necessarily extended when new
kinds of items are added.

4. Thecontrollershould have new methodssuchas makePolygonand addPoint

ToPolygon. It is not clear that this change is not a consequence of some basic

flaw in our design. For instance, it might be possible to replace the methods

makeLine, makeCircle, etc. by a single method, say makeShape.

 Thus one drawback to our approach is that we need to change the controller

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 37

class every time new operations are added or even if we change the way things are

implemented. In addition, the controller has all the implementation in one class,

which makes things complicated.

A more tricky problem is that of implementing undo. Clearly some kind of a stack

would be needed to remember the operations that have been completed. When an

undo is requested, an element from the top of the stack is popped, and this element

has to be ‘decoded’ to find out what the last operation was. This would require

some kind of conditional, and the complexity of this method would increase with the

number of different kinds of operations that we implement. In earlier chapters we

have seen how such complexity can be reduced by replacing conditional logic with

polymorphism. In the next section we examine a pattern that can help us improve the

design of the controller.

Implementing the Undo Operation

In the context of implementing the undo operation, a few issues need to be high-

lighted.

 Single-level undo versus multiple-level undo A simple form of undo is when

only one operation (i.e., the most recent one) can be undone. This is

relatively easy, since we can afford to simply clone the model before each

operation and restore the clone to undo.

 Undo and redo are unlike the other operations If an undo operation is

treated the same as any other operation, then two successive undo operations

cancel each other out, since the second undo reverses the effect of the first

undo and is thus a redo. The undo (and redo) operations must therefore

have a special status as meta-operations if several operations must be

undone.

 Not all things are undoable This can happen for two reasons. Some

operations like ‘print file’ are irreversible, and hence undoable. Other

operations like ‘save to disk’ may not be worth the trouble to undo, due to

the overheads involved.

 Blocking further undo/redo operations It is easy to see that uncontrolled

undo and redo can result in meaningless requests. In general, it is safer to

block redo whenever a new command is executed. Consider a situation

where we have the sequence: Select(a), undo, Select(a), redo. The redo tries

to mark a as selected, and this could result in an exception depending on how

things are implemented. A more severe problem arises with Create

Rectangle(r), Colour Rectangle(r, blue), undo, Delete(r), redo. Here, the

redo will attempt to colour a rectangle that does not exist any more.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 38

 Solution should be efficient This constraint rules out naive solutions like

saving the model to disk after each operation.

Keeping these issues in mind, a simple scheme for implementing undo could be

something like this:

1. Create a stack for storing the history of the operations.

2. For each operation, define a data class that will store the information necessary

to undo the operation.

3. Implement code so that whenever any operation is carried out, the relevant infor-

mation is packed into the associated data object and pushed onto the stack.

4. Implement an undo method in the controller that simply pops the stack, decodes

the popped data object and invokes the appropriate method to extract the infor-
mation and perform the task of undoing the operation.

One obvious approach for implementing this is to define a class StackObject that

stores each object with an identifying String.

public class StackObject {

private String name;

private Object object;

public StackObject(String string, Object object) {

name = string;

this.object = object;

}

public String getName() {

return name;

}

public Object getObject() {

return object;

}

}

Each command has an associated object that stores the data needed to undo it. The

class corresponding to the operation of adding a line is shown below.

public class LineObject {

private Line line;

public Line getLine() {

return line;

}

public LineObject(Line line) {

this.line = line;

}

}

When the operation for adding a line is completed, the appropriate StackObject
instance is created and pushed onto the stack.

public class Controller {

private Stack history;

public void makeLine(Point point1, Point point2) {

Line line = new Line(point1, point2);

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 39

model.addItem(line);

history.push(new StackObject("line", new LineObject(line)));

}

// other fields and methods

}

Decoding is simply a matter of popping the stack reading the String.

public void undo() {

StackObject undoObject = history.pop();

String name = undoObject.getName();

Object obj = undoObject.getObject();

if (name.equals("line")) {

undoLine((LineObject)obj);

} else if (name.equals("delete")) {

undoDelete((DeleteObject)obj);

} else if (name.equals("select")) {

undoSelect((SelectObject)obj);

}

// one else if for each command

}

Finally, undoing is simply a matter of retrieving the reference to and removing the

line form the model.

public class Controller {

public void undoLine(LineObject object){

Line line = object.getLine();

model.removeItem(line);

}

}

There are two obvious drawbacks with this approach:

1. The long conditional statement in the undo method of thecontroller.

2. The need to rewrite the controller whenever we make changes such as adding or

modifying the implementation of an operation.

The object-oriented approach for dealing with the first drawback is to subclass the

behaviour by creating an inheritance hierarchy and replace conditional logic with

polymorphism.

Let us refactor the code to accomplish this. Before replacing the conditional,

however, we see that undo in the controller is mostly working off the data stored in

StackObject and our first order of business is to extract and move this method.

public class Controller {

private Stack history;

public void undo() {

StackObject undoObject = history.pop();

undoObject.undo(this);

}

// other fields and methods

}

 public class StackObject {

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 40

public void undo(Controller controller) {

String name = getName();

Object object = getObject();

if (name.equals("line")) {

controller.undoLine((LineObject)object);

} else if (name.equals("delete")) {

controller.undoDelete((DeleteObject)object);

} else if (name.equals("select")) {

controller.undoSelect((SelectObject)object);

}

}

// other fields and methods

}

Figure. 4.15 Representing the drawing of a line

Now our conditional is in StackObject and we are ready to subclass this

behav- iour. Since each kind of data object is associated with an operation,

our hierarchy will have a subclass corresponding to each operation. For

example, to represent the drawing of a line, we have the class LineObject

as a subclass of StackObject (Figure 4.15).
This is a lot simpler and cleaner, although we have paid a price by increasing

the number of method calls. Note that we no longer ‘decode’ the stored objectsand

therefore the name field is not required. The makeLine method is simplified, so it

just creates a LineObject and pushes it onto the stack.

public void makeLine(Point point1, Point point2) {

Line line = new Line(point1, point2);

model.addItem(line);

history.push(new LineObject(line));

}

In the next subsection, we look into creating a fully reusable controller.
Figure. 4.16 The

command class

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 41

4.7.1 Employing the Command Pattern
The reader may have noticed a familiar pattern in the above code. In its undo method,

the controller passes itself as a reference to the undo method of the StackObject.

In turn, each subclass of the StackObject (e.g., LineObject) passes itself as

reference when invoking the appropriate undo method of the controller. This is an

implementation of double dispatch that we used when employing the visitor pattern

and was wholly appropriate when introducing new functionality into an existing

hierarchy. In this context, however, we find that this results in unnecessarily moving

a lot of data around. One of the lasting lessons of the object-oriented experience is

the supremacy of data over process (The Law of Inversion), which we can utilise

in this problem by using the commandpattern.

The intent of the command pattern is as follows

“Encapsulate a request as an object, thereby letting you parametrise clients with different

requests, queue or log requests, and support undoable operations.”

We have partially satisfied this intent in our scenario by associating an object with

each operation. For instance, whenever we execute an operation to create a line, a

LineObject is created and pushed onto the stack. What we have failed to recognise

so far is that this object need not merely be a repository of associated data but can

also encapsulate the routines that need access to this data.

The command pattern provides us with a template to address this. The abstract

Command class has abstract methods to execute, undo and redo. Shown in

figure 4.16

The default undo and redo methods in Command return false, and these need
to be overridden as needed by the concrete command classes.

Adding a line Since every command is represented by a Command object, the first

order of task when the Draw Line command is issued is to instantiate a LineCommand

object. We assume that we do this after the user clicks the first endpoint although
there is no reason why it could not have been created immediately after receiving the

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 42

Figure. 4.17 Sequence diagram for adding a line

command. In its constructor, LineCommand creates a Line object with one of its
endpoints specified.

The central idea behind the command pattern is to employ two stacks: one for

storingthecommandsthatcanbeundone(history stack) and theother for maintaining

the commands that may be redone (redo stack). The class UndoManager maintains

these stacks. (Werefer to the corresponding object by the term undo manager.) The

undo manager plays the role of the controller, but we have given it a new name to

highlight its main function. We take the approach that as soon after the command

object is created, the view informs the undo manager, which is then expected to

initiate its bookkeeping operations. Similarly, when the view has received all of the

data needed to complete the command, it notifies the UndoManager once more.

The two methods beginCommand and endCommand are for these two purposes.

In the course of execution of the beginCommand method, the undo manager

ensures the the Line object gets added to the model. This way, should the view be

refreshed, the partial line will be shown on the screen.

When the command is completed and the endCommand method is executed,

the undo manager pushes the command onto the history stack. This way the latest

command is always at the top of this stack. we clear the redo stack whenever a new

command is issued.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 43

Assume that the user issues the sequence of commands:

Add Label (Label 1)

Draw Circle (Circle

Add Label (Label 2)

Draw Line (Line 1)

At this time, there are four Command objects, one for each of the above commands,
and they are on the history stack as in Figure. 4.18. The redo stack is empty: since
no commands have been undone, there is nothing to redo. The picture also shows

the collection object in the model storing the two Label objects, the Circle

object, and the Line object.

Undoing an operation Continuing with the above example, we now look at the

sequence of actions when the undo request is issued immediately after the line

(Line 1) has been completely drawn in the above sequence of commands. Obviously,

the user views the command as undone if the line disappears from the screen: for

this, the Line object must be removed from the collection. To be consistent with this

action and to allow redoing the operation, the LineCommand object must be popped

from the history stack and pushed onto the redo stack. The resulting configuration is

shown in Figure. 4.19.

Not every command is undoable. So the general rule is that when the undo

operation is requested, if the top of the undo stack is a command that can be

undone, the command is undone and transferred to the redo stack.

The redo operation is simple enough: if the redo stack is not empty, the command

must be reexecuted, and the top object in the redo stack must be transferred to

Figure. 4.18 Status of the stacks and the collection in the model

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 44

Figure. 4.19 Status of the stacks and the collection in the model after undo

As we noted earlier, not every command may be undoable. If an undoable

operation is on the undo stack, the undo cannot proceed beyond that operation

although there might be undoable operations underneath it in the stack. To get

around this problem, we might choose to not push undoable commands onto the

stack. This can be accomplished by making the command itself assume the

responsibility for pushing onto the history stack. This can conveniently be done in

the class’s constructor.

A related issue concerns unfinished commands. We use the term incomplete com-

mand to refer to a command that has not yet been properly terminated. An incomplete

item is an item, such as a line or a label, that might not have proper values for every

field. We use the term complete item to refer to an item for which the user has sup-

plied. all the input necessary for completely specifying the item. For example,

suppose a user clicks the ‘Create Line’ button and clicks one point. Before clicking

a second time to specify the second point, suppose the user clicks the ‘Add Label’

button. The Create Line command is incomplete. Moreover, the line is also

incomplete at this stage, and it is already stored in the model, which now ends up

containing incomplete data. One could argue that it was the user’s fault, but the

program must tolerate such errors and it would be nice if there was a way to fix this

problem.

How should this be handled? We can suggest at least two ways:
1. We could prevent the possibility of users aborting commands in the middle. A

popular approach is to disable all command buttons when a new command is

finished and leave them disabled until the command is completed. When the

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 45

command is completed, all of the buttons are enabled.

2. A second possibility is to handle this with an additional method in both the undo

manager and the command class.

The difficulty with the first approach is that the UI is responsible for ensuring data

consistency. The responsibility for ensuring that items are complete must rest with

the command classes and not with the user interface.

Weproceed with the second choice, for which we will have the undo manager keep

the current command away from the history stack until the command itself ‘certifies’

that it is complete. For this purpose, every command class has an additional method,

end, which checks whether the item is complete and attempts to fill the missing

values if necessary. If there is not enough data to make the item complete, the method

returns a false value and the undo manager does not put the command on the stack.

The pseudo-code for the end method is as follows:

public boolean end() {

if item is incomplete

attempt to complete using data already received;

if cannot be completed

return false;

end if

end if

return true

}

The undo manager does not push a new command onto the stack until it is clear that

the item is complete.

We now explain the implementation of the above concepts.

4.7.2 Implementation
Subclasses of Command The concrete command classes (such as LineCommand)

store the associated data needed to undo and redo these operations. Just as the

makeLine method in the previous implementation had three versions, the

LineCommand class has three constructors, allowing some flexibility in the design

of the view.

The implementation of methods specific to the Command class are shown below.

The execute method simply adds the command to the model so the line will

be drawn. To undo the command, the Line object is removed from the model’s

collection. Finally, redo calls execute.

public void execute() {

model.addItem(line);

}

public boolean undo() {

model.removeItem(line);

return true;

}

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 46

public boolean redo() {

execute();

return true;

}

As explained earlier, the class has a method called end, which attempts to complete

an unfinished command. The situation is considered hopeless if both endpoints are

missing, so the object removes the line from the model (undoes the command) and

returns a false value. Otherwise, if the line is incomplete (has at least one endpoint

unspecified), the start and end points are considered the same. The implementation

is:

public boolean end() {

if (line.getPoint1() == null) {

undo();

return false;

}

if (line.getPoint2() == null) {

line.setPoint2(line.getPoint1());

}

return true;

}

UndoManager It declares two stacks for keeping track of the undo and redo oper-

ations: (history) and (redoStack). The current command is stored in a field

aptly named currentCommand.

public class UndoManager {

private Stack history;

private Stack redoStack;

private Command currentCommand;

}

If the command was not properly terminated, we arrange matters such that

currentCommand will not be null when a new command is issued. Recall that

when a new command is issued, the beginCommand method of the undo manager

is called. If currentCommand is not null at this time, the undo manager attempts

to complete it by calling the command’s end method. The beginCommand method

is implemented as below.

public void beginCommand(Command command) {

if (currentCommand != null) {

if (currentCommand.end()) {

history.push(currentCommand);

}

}

currentCommand = command;

redoStack.clear();

command.execute();

}

The undo and redo are straightforward operations.

 public void undo() {

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 47

if (!(history.empty())) {

Command command = (Command) (history.peek());

if (command.undo()) {

history.pop();

redoStack.push(command);

}

}

}

public void redo() {

if (!(redoStack.empty())) {

Command command = (Command)(redoStack.peek());

if (command.redo()) {

redoStack.pop();

history.push(command);

}

}

}

When a command is complete, the view calls the endCommand method of the

undo manager, which pushes currentCommand onto the history stack and sets

currentCommand to null.

public void endCommand(Command command) {

command.end();

history.push(command);

currentCommand = null;

model.updateView();

}

Handling the input The view declares one button class for each command (add

label, draw line, etc.). The class for handling line drawing is implemented as below.

public class LineButton extends JButton implements ActionListener {

// fields for view, drawing panel, handlers, etc.

public LineButton(UndoManager undoManager, View jFrame, JPanel jPanel) {

// store the parameters and create the mouse listener

}

public void actionPerformed(ActionEvent event) {

// change the cursor

drawingPanel.addMouseListener(mouseHandler);

}

private class MouseHandler extends MouseAdapter {

public void mouseClicked(MouseEvent event) {

if (first point) {

lineCommand = new LineCommand(event.getPoint());

UndoManager.instance().beginCommand(lineCommand);

} else if (second point) {

lineCommand.setLinePoint(event.getPoint());

drawingPanel.removeMouseListener(this);

view.setCursor(new Cursor(Cursor.DEFAULT_CURSOR));

UndoManager.instance().endCommand(lineCommand);

}

}

}

}

The above class thus directly creates the appropriate command object when a request

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 48

comes from a user.

4.8 Drawing Incomplete Items

Recall the terms incomplete item and complete item we introduced in the previous

section. There are a couple of reasons why in the drawing program we might wish

to distinguish between these two types of items.

1. Incomplete items might be rendered differently from complete items. For instance,

for a line, after the first click, the UI could track the mouse movement and draw

a line between the first click point and the current mouse location; this line keeps

shifting as the user moves the mouse. Likewise, if we were to extend the program

to include triangles, which need three clicks, one side may be displayed after two

clicks. Labels in construction must show the insertion point for the next character.

2. Some fields in an incomplete item might not have ‘proper’ values. Consequently,

rendering an incomplete item could be more tricky. An incomplete line, for

instance, might have one of the endpoints null. In such cases, it is inefficient

to use the same render method for both incomplete items and complete items

because that method will need to check whether the fields are valid and take

appropriate actions to handle these special cases. Since we ensure that there is at

most one incomplete item, this is not a sound approach.

We can easily distinguish between incomplete items and complete items by having

a field that identifies the type. The render method will behave differently based on

this field. The approach would be along the following lines.

public class Line {

private boolean incomplete = true;

public boolean isIncomplete() {

return incomplete;

}

// other fields and methods

}

public class NewSwingUI implements UIContext {

// fields and methods

public void draw(Line line) {

if (line.isIncomplete()) {

draw incomplete line;

} else {

draw complete line;

}

}

}

In circumstances such as the above, where we have variant behaviour based on field

values, the object-oriented philosophy dictates subclassing, i.e., we treat the incom-

plete item as a different class of object with its own rendering method. We create

classes for incomplete items (such as IncompleteLabel) that are subclasses

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 49

of items (such as Label). Since the class IncompleteLabel is a subclass of

Label, the model is unaware of its existence. Once the object is created, the incom-

plete object can be removed from the model.

The details are as follows.

import java.awt.*;

public class IncompleteLabel extends Label {

public IncompleteLabel(Point point) {

super(point);

}

public void render() {

// code for rendering IncompleteLabel

}

public boolean includes(Point point) {

return false;

}

}

One problem we face with the above approach is that UIContext must include

the method(s) for drawing the incomplete items (draw(IncompleteLabel

label), in our example). This suggests that UIContext needs to be modi-

fied. However, the manner in which incomplete items are rendered is an issue that

largely relates to the look and feel of the system. For instance, UIContextmight

not have a method draw(IncompleteLine line) and creator of some view

(NewSwingUI, for instance) might wish to include that. In general, we would like

a solution that allows for a customised presentation which may require subclassing
the behaviour of some concrete items. This can be accomplished through RTTI. In

particular, the situation where the NewSwingUI wants its own method for drawing

an incomplete line is implemented as follows:

public class NewSwingUI implements UIContext {

// fields and methods

public void draw(Line line) {

if (line instanceof IncompleteLine) {

this.draw((IncompleteLine) line);

} else {

//code to draw Line

}

}

}

The LineCommand object creates an IncompleteLine and adds this to the

model. This new class is thus known only to the controller and NewSwingUI.

When the label creation is complete, the IncompleteLine object is removed

from the model and replaced with a Line object. This implementation therefore

gives a solution where variability is contained.

Finally, we examine item creation in this new context. Assume that the user

clicks on the ‘Add Label’ button. On the creation of the LabelCommand object,

an IncompleteLabel object is created and stored within the command object.

When label is completed, the end method of the command object is called, and

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 50

in this method, a Label object is created and data from the incomplete version is

copied to it. The IncompleteLabel object is deleted from the model and the

Label object takes its place. The relevant code from LabelCommand is shown

below.

public void end() {

model.removeItem(label);

String text = label.getText();

label = new Label(label.getStartingPoint());

for (int index = 0; index < text.length(); index++) {

label.addCharacter(text.charAt(index));

}

execute();

}

This completes the basic implementation of our simple graphical system. Note that

if any new operation has to be added, all we have to do is create new classes that

extend Command and Item, and modify the view to allow the user to invoke the

new operation. Modifying the view is simply a matter of defining a new class that

extends JButton and adding an instance of this class to the button panel. The

model, the view and the controller are essentially repositories for the items, buttons,

and commands respectively, and thus provide a framework for creating the specified

system.

Adding a New Feature
Most interactive systems that are used to create graphical objects, allow users to

define new kinds of objects on the fly. A system for writing sheet music may allow a

user to define a sequence of notes as a group. This would enable the user to manipulate

these notes as a group, making copies of these as needed. In a system for drawing

electrical circuits, a set of components interconnected in a particular way could be

clustered together as a ‘sub-circuit’ that can then be treated as a single unit. In a

drawing program like the one we have created, a complex figure may be created as a

collection of lines and circles, which may have to be moved around a single unit. In

all these cases, the user-friendliness of the system would be considerably improved

if a feature is provided to enable such operations.

Let us examine how our system needs to be modified to accommodate this. The

process for creating such a ‘compound’ object would be as follows: The user would

select the items that have to be combined by clicking on them. The system would

then highlight the selected items. The user then requests the operation of combing

the selected items into a compound object, and the system combines them into one.

Which Subsystem ‘Owns’ a Class?

In our original approach to designing this system using the MVC architecture,

we were partitioning the responsibilities between the three subsystems. As

we looked into the finer details of the implementation, we encountered some

problems and found some suitable patterns that could improve our design. The

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 51

use of these patterns, however apparently ‘blurs’ some of the clear boundaries.

Consider for instance the bridge pattern. We created the UIContext

interface within the model to house the draw methods of all the items. The

model does not have the information, however, to create a concrete instance

of UIContext and this task is left to the View class. UIContext and its

implementing classes belong to the view subsystem.
The original controller was replaced by a collection of classes including

UndoManager and the various subclasses of Command, so they could be

considered belonging to the controller subsystem. The undo manager defines

the interface for the command but does not have any information on how each

individual command should receive and process input.

The reader should realise that the subsystems are only providing a context

within which the details can be fleshed out. The controller is providing a format

for the creation of commands and also a system that manages these commands.

When a command has to be added, a class is defined and the view is modified to

allow for its invocation. Likewise the model provides a template for rendering

all the kinds of items, but a complete knowledge of the view is needed to

provide a concrete implementation.

Once a compound object has been created, it can be treated as a any other object.

This process can be iterated, i.e., a compound object can be combined with other

objects (which could themselves be compound or simple objects) to create another

compound object. The system also allows the user to ‘breakdown’ a compound item

into its constituent items by first selecting the item(s) to be broken down and then

choosing the ‘decompose’ operation. Note that if a compound item is created by

combining two compound items, then decomposing it will give us back the two

original compound items. Finally, the system must have the ability to undo and redo

these operations.

Since we have to store a collection of items, an obvious approach to implementing

this would be to create a newkind of item that maintains a collection of the constituent

items. This would be a concrete class and would look like this:

public class CompoundItem {

List items;

public CompoundItem(/* parameters */) {

//instantiate lists

}

public Enumeration getItems() {

//returns an enumeration of the objects in Items

}

// other fields and methods

}

Since items consists of both simple items and compound items, it seems logical

that all entities stored in items are designated as belonging to the class Object.

The model would also have to be modified so that the container classes would hold

collections of type Object.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 52

Consider now any class that examines at the collection of items in the model

(i.e., a ‘client’ class). One of these would be the SelectCommand. When a

SelectCommand object gets the coordinates of the mouse click, it iterates through

the collection in the model to determine the selected item. If the object is a simple

item, it would be cast as an Item and the includes method would be invoked;

if the object is a compound item, it would be cast as a CompoundItem and the

getItems method would be invoked to get an enumeration of the objects that

make up the compound item. Clearly, this is not the most desirable state of affairs

since the client method is querying the type of the object (which is akin to switching

on the fields of the object) to determine what operation is to be performed. Our stan-

dard approach in such situations is to create an inheritance hierarchy and use dynamic

Figure. 4.20 Tree structure formed by compound items

binding. The dilemma here is that we have a two fundamentally different kinds of

entities: a simple item is a single item, whereas a compound item is a collection of

items. The composite pattern gives us an elegant solution to this problem.

The intent of the composite pattern is as follows (see footnote 1):

Compose objects into tree structures to represent part-whole hierarchies. Composite lets

clients treat individual objects and compositions of objects uniformly.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 53

A compound item is clearly a composition of simple items. Since each compound

itemcould itself consist of other compound items, we havethe requisite tree structure.

The class interaction diagram for the composite pattern is shown in Fig. 4.21.

Note that the definition of the compound item is recursive and may remind readers of

the recursive definition of a tree. Following this diagram, the class CompoundItem

is redefined as follows:

public class CompoundItem extends Item {

List items;

public CompoundItem(/* parameters */){

//instantiate lists

}

public void render(){

// iterates through items and renders each one.

}

Figure. 4.21 Composite structure of the item hierarchy

public boolean includes(Point point) {

/* iterates through items and invokes includes on each item.

Returns true if any of the items returns true and false otherwise. */

}

public void addItem(Item item) {

// Adds item to items

}

// other fields and methods

}

Modifying the system to allow for creating compound objects is just like any of the

operations discussed earlier. The system already has an operation for selecting items.

Once that is complete, user chooses the ‘create composite’ operation. This would

require that a new class be defined (extending JButton) and that the view be

modified to add this button to the button panel. A new class, CompositeCommand

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 54

(extending Command) is defined. The execute method of this class removes all

the selected items from the Model and adds them to a new CompoundItem object,

which is then added to the Model. The view renders a CompoundItem exactly in

the same way as it renders any other instance of Item. Note also that the select

operation invokes the includes method on CompoundItem exactly as it would

on simple items.

4.9 Pattern-Based Solutions
As explained earlier a pattern is a solution template that addresses a recurring problem

in specific situations. In a general sense, these could apply to any domain. In the

context of creating software, three kinds of patterns have been identified. At the

highest level, we have the architectural patterns. These typically partition a

system into subsystems and broadly define the role that each subsystem plays and

how they all fit together.

Architectural patterns have the following characteristics:

 They have evolved over time In the early years of software

development, it was not very clear to the designers how systems should

be laid out. Over time, some kind of categorization emerged, of the

kinds software systems that are needed. In due course, it became clearer

as to how these systems and the demands on them change over their

lifetime. This enabled practitioners to figure out what kind of layout

could alleviate some of the commonly encountered problems.

 A given pattern is usually applicable for a certain class of software

system The MVC pattern for instance, is well-suited for interactive

systems, but might be a poor fit for designing a payroll program that

prints paychecks.

 The need for these is notobvious to the untrained eye When a designer first

encounters a new class of software, it is not very obvious what the

architecture should be. One reason for this is that the designer is not

aware of how the requirements might change over time, or what kind of

modifications are likely to be needed. It is therefore prudent to follow

the dictates of the wisdom of past practitioners. This is somewhat

different from design patterns, which we are able to ‘derive’ by

applying some of the well-established ‘axioms’ of object-oriented

analysis and design. (In case of our MVC example, we did justify the

choice of the architecture, but this was done by demonstrating that it

would be easier to add new operations to the system. Such an

understanding is usually something that is acquired over the lifetime of

a system.)

At the next level, we have the design patterns. These solve problems that could

appear in many kinds of software systems. Once the principles of object-oriented

analysis and design have been established it is easier to derive these. Examples of

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 55

these can be found throughout this text.

At the lowest level we have the patterns that are called idioms. Idioms are the

patterns of programming and are usually associated with specific languages. They

typically refer to the use of certain syntactic elements of the language. As program-

mers, we often find ourselves using the same code snippet every time we have to

accomplish a certain task. Sometimes, we may save these as ‘macros’ to be copied and

pasted as needed thus enabling us to be more productive in terms of code-generation.

Idioms are something like these, but they are usually carefully designed to take the

language features (and quirks!) into account to make sure that the code is safe and

efficient. The following code, for instance, is commonly used toswap:

temp = a;

a = b;

b = temp;

In Perl, the list assignment syntax allows us to employ a more succinct expression:

($a, $b) = ($b, $a);

This would be an example of an idiom for Perl. In addition to safety and efficiency,

the familiarity of the code snippet makes the code more readable and reduces the

need for comments. Typical Perl programmers might be more comfortable with the

second whereas a Java programmer would prefer the first.

Not all idioms are without conflict. There are two possible idioms for an infinite

loop:

for (;;) {

// some code

}

while (true) {

// some code

}

It has been argued that the first one should be preferred for efficiency, since no

expression evaluation is involved at the end of each iteration. However, with the

availability of optimising compilers and increasing hardware capacity nowadays,

some programmers are making a case for the second one based on readability and

elegance.

4.10.1 Examples of Architectural Patterns
The Repository

This architecture is characterized by the presence of a single data structure called

the central repository. Subsystems access and modify the data stored in this. An

example of such a system could be software used for managing an airline. The

subsystems in this case could be the ones for managing reservations, scheduling

staff, and scheduling aircraft. All of these would access a central data repository

that holds information about aircraft, staff, and passengers. These would be inter-

related, since a choice of an aircraft could likely influence the choice of staff and

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 56

be influenced by the volume of passenger traffic. In such systems, the control flow

can be dictated by the central repository (changes in the data characteristics could

trigger some operations), or from one of the subsystems. Another application of such

a system could be for managing a large bank. The account information would have

to be centrally located and could be accessed and modified from several peripheral

locations. A software development system or a compiler could also employ such an

architecture by having a centralized parse-tree or symbol table.

The Client-Server

In such a layout, there is a central subsystem known as a server and several smaller

subsystems known as clients which are typically quite similar. There is a fair amount

of independence in the control flow, and each subsystem may be using a differ-

ent thread. Synchronisation techniques are often employed to manage requests and

transmit results.

The world-wide-web is probably the best example of such an architecture. The

browsers running on PCs are like clients and the sites they access play the role

of servers. The server could also be housing a database and the clients could be

processes that are querying and updating the database. A variant/generalisation of

this is the peer-to-peer architecture where the client/server role of the subsystems

are interchangeable. These variants are typically hard to design due to the possibility

of deadlocks and a myriad of other problems that can complicate the flow of control.

The Pipe and Filter

The system in this case is made up of filters, i.e., subsystems that process data,

and pipes, which can be used to interconnect the filters. The filters are completely

mutually independent and are aware only of the input data that comes through a pipe,

i.e., the filter knows the form and content of the data that came in, not how it was

generated. This kind of architecture produces a system that is very flexible and can

be dynamically reconfigured. In their simplest form, the pipes could all be identical,

and each filter could be performing a fixed task on data input stream. An example

of this would be that of processing incoming/outgoing data packets over a computer

network. Each ‘layer’ would be like a filter that adds to, subtracts from or modifies

the packet and sends it forward.

The Unix operating system is a more sophisticated version of such an architecture,

and allows the user to create more complex operations by linking together simpler

ones. In its most general form, one could have pipes that ‘reformat’ the data, so that

any sequence of filters could be used.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 1

MODULE 5

Designing with Distributed Objects

Definition: Businesses usually install multiple computer systems that are

interconnected by communication links, and applications run across a network of

computers rather than on a single machine. Such systems are called distributed

systems.

Advantages

a. It is more economical and efficient to process data at the point of origin.

b. Distributed systems make it easier for users to access and share resources.

c. They also offer higher reliability and availability: failure of a single

computer does not cripple the system as a whole.

d. It is also more cost effective to add more computing power.

Drawbacks

a. The software for implementing them is complex.
Distributed systems must coordinate actions between a number of

possibly heterogeneous computer systems; if data is replicated, the copies

must be made mutually consistent.

b. Data access may be slow because information may have to be

transferred across communication links.

c. Securing the data is a challenge.

As data is distributed over multiple systems and transported over

communication links, care must be taken to guarantee that it is not lost,

corrupted, or stolen.

5.1 Client server system

Distributed systems can be classified into :

1. Peer-to-Peer systems :

Every computer system (or node) in the distributed system runs the same set
of algorithms; they are all equals, in some sense

2. Client-Server systems :

There are two types of nodes: clients and servers. A client machine sends

requests to one or more servers, which process the requests, and return the

results to the client.

5.1.1 Basic Architecture of Client/Server Systems

 Figure below shows a system with one server and three clients.
 Each client runs a program that provides a user interface, which may or not

be a GUI.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 2

 The server hosts an object-oriented system.
 Like any other client/server system, clients send requests to the server, these requests

are processed by the object-oriented system at the server, and the results are returned.

 The results are then shown to end-users via the user interface at the clients.

There is a basic difficulty in accessing objects running in a different Java Virtual Machine

(JVM). Let us consider two JVMs hosting objects as in Fig. below.

 A single JVM has an address space part of which is allocated to objects living in it.

 For example,

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 3

 Objects object 1 and object 2 are created in JVM 1 and are allocated at

addresses A1 and A2 respectively. Similarly, objects object 3 and object 4 live

in JVM 2 and are respectively allocated addresses A3 and A4.

 Code within Object 2 can access fields and methods in object 1 using address

A1. However, addresses A3 and A4 that give the addresses of objects object 3

and object 4 in JVM 2 are meaningless within JVM 1.

This difficulty can be handled in one of two ways:

1. By using object-oriented support software:

The software solves the problem by the use of proxies that receive method calls on

‘remote’ objects, ship these calls, and then collect and return the results to the object that

invoked the call. The client could have a custom-built piece of software that interacts with the

server software. This approach is the basis of Java Remote Method Invocation.

2. By avoiding direct use of remote objects by using the Hyper Text Transfer Protocol
(HTTP).

The system sends requests and collects responses via encoded text messages. The

object(s) to be used to accomplish the task, the parameters, etc., are all transmitted via these

messages. This approach has the client employ an Internet browser, which is, of course, a

piece of general-purpose software for accessing documents on the world-wide web.

5.2 Java Remote Method Invocation

The goal of Java RMI is to support the building of Client/Server systes where the server hosts

an object-oriented system that the client can access programmatically.

The objects at the server maintained for access by the client are termed remote objects.

A client accesses a remote object by getting what is called a remote reference to the

remote object.

After that the client may invoke methods of the object.

The basic idea behind RMI is to employ the proxy design pattern.

Java RMI employs proxies to stand in for remote objects. All operations exported to

remote sites (remote operations) are implemented by the proxy. Proxies are termed

stubs in Java RMI. These stubs are created by the RMI compiler.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 4

The set-up is shown in above figure:

When the client calls a remote method, the corresponding method of the proxy object

is invoked. The proxy object then assembles a message that contains the remote

object’s identity, method name, and parameters. This assembly is called marshalling.

In this process, the method call must be represented with enough information so that

the remote site knows the object to be used, the method to be invoked, and the

parameters to be supplied.
 When the message is received by it, the server performs demarshalling, whereby the

process is reversed.

Setting up a remote object system is accomplished by the following steps:

1. Define the functionality that must be made available to clients. This is accomplished by

creating remote interfaces.

2. Implement the remote interfaces via remote classes.

3. Create a server that serves the remote objects.

4. Set up the client.

5.2.1 Remote Interfaces

1. In the case of RMI, the functionality exported of a remote object is defined via what is

called a remote interface. A remote interface is a Java interface that extends the

interface java.rmi.Remote.

2. Clients are restricted to accessing methods defined in the remote interface. We call

such method calls remote method invocations.

Remote method invocations can fail due to a number of reasons:

a. The remote object may have crashed,

b. the server may have failed, or

c. the communication link between the client and the server may not be operational, etc.

NOTE: Java RMI encapsulates such failures in the form of an object of type

java.rmi.RemoteException; as a result, all remote methods must be declared to throw this

exception.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 5

5.2.2 Implementing a Remote Interface

1. The next step is to implement via remote classes.

 Parameters to and return values from a remote method may be of primitive type, of

remote type, or of a local type.

 All arguments to a remote object and all return values from a remote object must be

serializable. Thus, they must implement the java.io.Serializable interface.

 Parameters of non-remote types are passed by copy;

 Intuitively, remote objects must somehow be capable of being transmitted over

networks. A convenient way to accomplish this is to extend the class

java.rmi.server.UnicastRemoteObject.

2. Since it is a remote class, Book must be compiled using the RMI compiler by

invoking the command rmic as below.

Rmic Book

The compiler produces a file named Book_Stub.class, which acts as a proxy for calls

to the methods of BookInterface. The stub contains a reference to the serialized object

and implements all of the remote interfaces that the remote object implements. All

calls to the remote interface go through the stub to the remote object.

3. Remote objects are thus passed by reference. This is depicted in Figure below:

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 6

 Here , we have a single remote object that is being accessed from two clients.

 Both clients maintain a reference to a stub object that points to the remote object that

has a field named a.

 Suppose now that Client 1 invokes the method setA with parameter 5.

 The call goes through the stub to the remote object and gets executed changing the

field a to 5. any changes made to the state of the object by remote method invocations

are reflected in the original remote object.

 If the second client now invokes the method getA, the updated value 5 is returned to it.

NOTE: parameters or return values that are not remote objects are passed by value. Thus,

any changes to the object’s state by the client are reflected only in the client’s copy, not in the

server’s instance.

5.2.3 Creating the Server

Before a remote object can be accessed, it must be instantiated and stored in an object

registry, so that clients can obtain its reference. Such a registry is provided in the form of the

class java.rmi.Naming. The method bind is used to register an object and has the following

signature:

The first argument takes the form //host:port/name and is the URL of the object to be registered;

 host refers to the machine (remote or local) where the registry is located,

 port is the port number on which the registry accepts calls, and

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 7

 name is a simple string for distinguishing the object from the other objects in the registry.

 Both host and port may be omitted if its in localhost and port no is 1099.

The process of creating and binding the name is given below.

The complete code for activating and storing the Book object is shown below.

5.2.4 The Client

A client may get a reference to the remote object it wants to access in one of two ways:

1. It can obtain a reference from the Naming class using the method lookup.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 8

2. It can get a reference as a return value from another method call.

In the following code, the getters of the Book Interface object are called and displayed.

5.2.5 Setting up the System

1. To run the system, create two directories, say server and client, and copy the files

BookInterface.java, Book.java, and BookServer.java into server and the file

BookUser.java into client.

2. Then compile the three Java files in server and then invoke the command

rmic Book

3. This command creates the stub file Book_ Stub.class.

4. Copy the client program into client and compile it.

5. Run RMI registry and the server program using the following commands

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 9

 The first command starts the registry and

 The second causes the Book instance to be created and registered with the

name MyBook.

6. Finally, run the client as below from the client directory.

7. The client code starts, looks up the object with the name MyBook, calls the object’s

getter methods, and displays the values.

5.3 Implementing an Object-Oriented System on the Web

5.3.1 HTML and Java Servlets

 System displays web pages via a browser has to create HTML code.

 HTML code displays text, graphics such as images, links that users can click to

move to other web pages, and forms for the user to enter data.

 An HTML program can be thought of as containing a header, a body, and a trailer.

The header contains code like the following:

 The first four lines are usually written as given for any HTML file.

 observe words such as html and head that are enclosed between angled brackets (< and

>). They are called tags.

 HTML tags usually occur in pairs: start tag that begins an entry and end tag that

signals the entry’s end. For example, the tag <head> begins the header and is ended

by </head>.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 10

 The text between the start and end tags is the element content.

 In the fifth line we see the tag title, which defines the string that is displayed in the

title bar.

As a sample body, let us consider the following.

 The body contains code that determines what gets displayed in the browser’s window.

 Some tags may have attributes, which provide additional information.

For example

 The tag span has its attribute style modified, so that the text will be in blue colour.

 Attributes always come in name/value pairs of the form name="value".

 They are always specified in the start tag of an HTML element.

 The body contains code to display the string An Application in the font Lucida

bright, bolded, italicised, and in blue color.

 The last line of the file is : </html> it ends the HTML file

Entering and Processing Data

The complete code that allows us to enter some piece of text in the web page is given below.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 11

The code that begins with the line :

<form action="/servlet/apackage.ProcessInput" method="post">

 The tag form begins the specification of a set of elements that allow the user to enter

information.

 The action attribute specifies that the information entered by the user is to be

processed by a Java class called ProcessInput.class, which resides in the package

apackage.

 The tag <table> begins the creation of a table.

 Each row of the table is described using the tag <tr>, and the tag <td> defines a cell in

the table.

 <input> tag has two attributes : type and name

 type: which specifies what is the type of input : "text", which means plain text or

"password", which makes the entry unreadable on the screen.

 name: must be given a unique value

<td><input type="text" name="userInput"></td>

 a button of type "submit", which when clicked causes the form data to be sent to the

server. The button has the label Process.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 12

<td><input type="submit" value="Process"></td>

There are two primary ways in which form data is encoded by the browser:

1. GET : GET means that form data is to be encoded into a URL

2. POST: POST makes data appear within the message itself.

Server-Side Code

 The server-side code ProcessInput is an example of a servlet, which uses the

request- response paradigm.

 Servlets can process data sent using the HTTP protocol via a form.

 They can handle multiple requests concurrently.

 We create a servlet by extending the class HttpServlet as below.

public class ProcessInput extends HttpServlet {

 Since we transmitted form data using the POST method, we need to override a

method called doPost.

o This method has two parameters, request and response that respectively

encapsulate the data sent by the client and the response to the client.

 The header of the doPost method is given below.

public void doPost(HttpServletRequest request, HttpServletResponse response) throws

IOException, ServletException {

 Data sent by the client through the form is retrieved using the request object as

below: String input = request.getParameter("userInput");

 Afterthedataiscapturedandprocessed,theservletcreatesanHTMLpageusing the

response object as below.

 The first line states that the data is HTML and the second line begins the HTML code.

 The complete code for the servlet is given below

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 13

5.3.2 Deploying the Library System on the World-Wide Web

Figure 5.1: How servlets and HTML cooperate to serve web pages

Developing User Requirements

First task is to determine the system requirements : Example Library system

1. The user must be able to type in a URL in the browser and connect to the library system.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 14

2. Users are classified into two categories:

a. super users :

 Superusers are essentially designated library employees, and ordinary

members are the general public who borrow library books. superusers can

execute any command when logged in from a terminal in the library.

b. Ordinary members.

 Ordinary members are the general public who borrow library books.

 Ordinary members cannot access some ‘privileged commands’.

In particular, the division is as follows:

a. Only superusers can issue the following commands: add a member, add a

book, return a book, remove a book, process holds, save data to disk, and

retrieve data from disk.

b. Ordinary members and super users may invoke the following commands:

issue and renew books, place and remove holds, and print transactions.

c. Every user eventually issues the exit command to terminate his/her session.

3. Some commands can be issued from the library only. These include all of the

commands that only the superuser has access to and the command to issue books.

4. A superuser cannot issue any commands from outside of the library. They can log in,

but the only command choice will be to exit the system.

5. Superusers have special user ids and corresponding password. For regular members,

their library member id will be their user id and their phone number will be the

password.

Logging in and the Initial Menu

Figure below shows the process of logging in to the system.

 When the user types in the URL to access the library system, the log in screen that

asks for the user id and password is displayed on the browser.

 If a valid combination is typed in, an appropriate menu is displayed.

 What is in the menu depends on whether the user is an ordinary member or a

superuser and whether the terminal is in the library or is outside.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 15

1. The Issue Book command is available only if the user logs in from a terminal in the

library.

2. Commands to place a hold, remove a hold, print transactions, and renew books are

available to members of the library (not superusers) from anywhere.

3. Certain commands are available only to superusers who log in from a library terminal:

these are for returning or deleting books, adding members and books, processing holds,

and saving data to and retrieving data from disk.

Add Book

The State transition diagram for adding book is shown below:

 When the command to add a book is chosen, the system constructs the initial screen to

add a book, which should contain three fields for entering the title, author, and id of

the book, and then display it and enter the Add Bookstate.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 16

 By clicking on a button, it should be possible for the user to submit these values to

system.

 The system must then call the appropriate method in the Library class to create a

Book object and enter it into the catalog.

 The result of the operation is displayed in the Command Completed state

 From the Command Completed state, the system must allow the user to add another

book or go back to the menu.

 In the Add Book state, the user has the option to cancel the operation and go back to

the main menu.

Add Member, Return Book, Remove Book

 We need to accept some input (member details or book id) from the user,

access the Library object to invoke one of its methods, and display the

result.

Save Data

State transition diagram for saving data

 When the data is to be written to disk, no further input is required from the user.

 The system should carry out the task and print a message about the outcome.

Issue Book

A book may be checked out in two different

ways:

First, a member is allowed to check it out himself/herself. Here the system already has the

user’s member id, so that should not be asked again.

Second, he/she may give the book to a library staff member, who checks out the book for the

member. Here the library staff member needs to input the membered to thesystem followed

by the book id.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 17

 After receiving a bookid, the system must attempt to check out the book.

 Whether the operation is successful or not, the system enters the Book Id Processed

state. Complexity arises from the fact that any number of books may be checked out.

Thus, after each book is checked out, the system must ask if more books need to be

issued or not.

 The system must either go to the Get Book Id state for one more book id or to the

Main Menu state.

 As usual, it should be possible to cancel the operation at any time.

State transition diagram for issuing books

Renew Books

 The system must list the title and due date of all the books loaned to the member.

 For each book, the system must also present a choice to the user to renew the book.

 After making the choices, the member clicks a button to send any renew requests to

the system.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 18

 For every book renewal request, the system must display the title, the due date

(possibly changed because of renewal), and a message that indicates whether the

renewal request was honoured.

 After viewing the results, the member uses a link on the page to navigate to the main

menu.

The state transition diagram is given in Figure below

Design and Implementation

To deploy the system on the web, we need the following:

1. Classes associated with the library

2. Permanent data (created by the save command) that stores information about

the members, books, who borrowed what, holds, etc.

3. HTML files that support a GUI for displaying information on a browser and

collecting data entered by the user. For example, when a book is to be returned, a

screen that asks for the book id should pop up on the browser. This screen will

have a prompt to enter the book id, a space for typing in the same, and a button to

submit the data to the system.

4. A set of files that interface between the GUI ((3) above) and the objects that

actually do the processing ((1) above). Servlets will be used to accomplish this

task

Structuring the files HTML code for delivery to the browser can be generated in

one of two ways:

1. Embed the HTML code in the servlets. This has the disadvantage of making the

servlets hard to read, but more dynamic code can be produced.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 19

2. Read the HTML files from disk as a string and send the string to the browser.

This is less flexible because the code remains static.

We attempt to combine the two approaches so as to utilize the advantages

1. Create a separate HTML file for every type of page that needs to be displayed. For

example, create a file for entering the id of the book to be returned, a second file for

displaying the result of returning the book, a third file for inputting the id of the book

to be removed, a fourth one for displaying the result of removing the book, etc.

2. Exploit the commonalities between the commands and create a number of HTML

code fragments, a subset of which can be assembled to form an HTML file suitable

for a specific context.

 The first option has the advantage of simplicity. However a rough calculation shows

that at least 28 files are needed.

 Although the second option is more involved because of the need to assemble a big

file from several fragments, we find that it presents some advantages over the first.

First, it reduces the number of files somewhat and

Avoids duplication of files.

For example, to change the way the library’s name is displayed in the screens,

every one of the HTML files will need to be updated! We thus opt for the second

choice.

Examples of HTML file fragment

Consider the two commands, one for returning and the other for removing books

 In both, the user must be presented with a web page that asks him/her to enter

a book id. We have just one file that displays this page.

 However, the servlet that needs to be invoked will change depending on the

context. Therefore, we code the servlet name as below.

<form action="GOTO_WITH_BOOKID" method="post">

 By simply changing the string GOTO_WITH_BOOKID in the servlet, we

can use the same HTML file in multiple situations

A similar approach is taken for accepting member ids.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 20

 For every webpage, the header should display a title that depends on the

context. We maintain just one file for the header. This file has a string TITLE

that stands for the title of the web page. Depending on which page is being

displayed, TITLE is replaced by an appropriate string, which gets displayed in

the title bar.

 When a command is completed, we need to display a web page.

 we employ just one file, commandCompleted.html, to carry out this task. This

file is adapted, however, in two different ways.

1. The result to be displayed will vary on the command as well as whether the operation

was successful. To take care of this, the file has a string called RESULT

<h3> RESULT
</h3>

Pseudocode

2. To reduce the number of mouse clicks, the user may be given the option to repeat the

command whose result is displayed by the commandCompleted.html file. For

example

,after completing the Add Book command, we need to give an option to issue the

command once again so that the user can add another book.

REPLACE_COMMAND

How to remember a

user

 Servlets typically deal with multiple users.

 When a servlet receives data from a browser, it must somehow figure out which user

sent the message, what the user’s privileges are, etc.

 Each request from the browser to the server starts a new connection, and once the

request is served, the connection is torn down.

 However, typical web transactions involve multiple request–response pairs. This

makes the process of remembering the user associated with a connection somewhat

difficult without extra support from the system.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 21

 The system provides the necessary support by means of what are known as sessions,

which are of type HttpSession.

 When it receives a request from a browser, the servlet may call the method

getSession() on the HttpServletRequest object to create a session object, or if a

session is already associated with the request, to get a reference to it.

 To check if a session is associated with the request and to optionally create one, a

variant of this method getSession(boolean create) may be used.

 If the value false is passed to this method and the request has no valid HttpSession,

this method returns null. When a user logs in, the system creates a session object as

below.

HttpSession session = request.getSession();

 When the user logs out, the session is removed as below.

session.invalidate();

 The following code evaluates to true if the user does not have asession: that is, the

user has not logged in:

request.getSession(false) == null

A session object can be used to store information about the

session.

1. void setAttribute(String name, Object value)

This command binds value, the object given in the second parameter, to the attribute

specified in name. By setting the second parameter to null, the attribute can be removed.

2. Object getAttribute(String name)

The attribute value associated with name is returned.

3. void removeAttribute(String name)

This method deletes the specified attribute from this session.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 22

Configuration

 The server runs with the support of Apache Tomcat, which is a servlet container.

 A servlet container is a program that supports servlet execution.

 The servlets themselves are registered with the servlet container.

 URL requests made by a user are converted to specific servlet requests by the servlet

container. The servlet container is responsible for initializing the servlets and

delivering requests made by the client browser to the appropriate servlet.

 The directory structure is as in Figure below:

 We store the HTML files in a directory named Library, which is a subdirectory of

webapps, which, in turn, is a subdirectory of the home directory of Tomcat.

 The servlets are in the package library, which is stored in Library/WEB-INF/classes.

 The implementation of the backend classes such as Member, Catalog, etc. is in the

package basicImplementation.

 Our implementation requires that the user create an environment variable named

LIBRARY-HOME that has as value the absolute path name of the directory that

houses the HTML files.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 23

 The deployment descriptor elements are defined in a file called web.xml. While this

file permits a large number of tags, our use of them is limited to mapping the URLs to

servlets. To understand how this is done, first examine the following lines of XML

code.

 Thus when we write code such as URL=login in the HTMLfile, the string

login is mapped to the servlet name LoginServlet.

 But the servlet name given by the tag <servlet-name> is just a name that is mapped to

the fully-qualified class name of the servlet as below.

 The list of superusers and their passwords is stored in a file named Privileged Users.

 The IP addresses of all client machines located in the library are listed in a file named

IPAddresses.

 Both files are to be stored in the same directory that has the HTML files.

 To run the system, first Tomcat needs to be started and then the library system needs

to be accessed from a browser by typing in the URL of the Tomcat home

concatenated with

/Library.

 The file index.html in the library directory is then accessed; this file directs the request

to the servlet Login.

Structure of servlets in the web-based library system

 A servlet receives data from a browser through a HttpServletRequestobject. This

involves parameter names and their values, IP address of the user, and so on.

For example, when the form to add book is filled and the Add button is clicked,

the servlet’s doPost method is invoked. As we have seen earlier, this method has

two parameters: a request parameter of type HttpServletRequest and a response

parameter of type HttpServletResponse.

 Each command is organized as a combination of one to three servlets.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 24

 The methods and doPost and doGet are collected into a class named LibraryServlet.

 This class has the structure shown in Figure below.

Most of the methods of LibraryServlet fall into one of five categories:

1. One group contains methods that store information about the user. This information

includes the user id, the type of terminal from which the user has logged in, etc. and

are stored in attributes associated with the session object. The methods are

addAttribute, setAttribute, getAttribute, and deleteAllAttributes.
2. Methods to validate users and help assess access rights. The validateSuper

Usermethod checks whether the user is a superuser and validateOrdinary Member does
the same job for ordinary members. The method library Invocation returns true if and
only if the user has logged in from a ter- minal located within the library.

3. The getFilemethod reads an HTML file and returns its contents as a String object.
4. The fourth group of methods are used for handling users who may have invoked a

command without actually logging in. The method notLoggedIn returns true if and
only if the user has not currently logged in. The method noLoginError Message
returns HTML code that displays an error message when a person who has not logged

in attempts to execute a command.

5. The final group of commands deal with processing the request and responding to it.
The doGet message calls doPost, which does some minimal processing needed for all
commands and then calls the abstract runmethod, which individual servlets override.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 25

Execution flow

Processing a request sometimes involves simply generating an HTML page,

The course of the execution of the command is shown in Figurebelow:

The URL associated with the text is as below:

Remove book

The URL for the servlet is removebookinitialization; recall that this corresponds to the
class RemoveBookInitialization, so when the link is clicked, the doPost method of that
servlet is invoked. The code for this method is in LibraryServlet and is as follows:

public void doPost(HttpServletRequest request, HttpServletResponse response)

throws IOException, ServletException

{

response.setContentType("text/html"); String page = run(request, response); if (!notLoggedIn(requ

{

setAttribute(request, "page", page);

}

response.getWriter().println(page);

}

The first line in the method specifies the type of the file for the response object:

whatever is written to the response object is treated as HTML.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 26

The run method is invoked, which is implemented within the subclass. This

method returns HTML code as a String object and is saved in the attribute named

page of the session. This helps in the following way.

o The system always remembers the last page displayed. If the user tries to

login from a different window of the browser, that page is redisplayed.

o It also helps when the user overwrites the current page by visiting some

other site and wants to come back to the library system.

o Finally, the page is written out and gets displayed in the browser.

The code for removing a book begins with the servlet RemoveBook Initialization, whose

run method is given below.

The first three lines in the runmethod check if the user has actually logged in and is

not here via some othermeans.

This can actually occur if the user has two windows connected to the library and

the exit command is issued from one of the two.

If that is indeed the case, the method noLoginErrorMessage() is called. This

method simply generates an HTML page that displays ‘Not logged in’ and supplies

a link to the log in screen.

In the case that the user is actually logged in, the HTML page is assembled. It

includes reading four files: one to begin the HTML page and the other to end it.

In between, a form to enter the book id and a link to cancel the command are inserted.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 27

As a consequence, the browser at the client displays a page that either requires the

user to enter the id of a book that should be removed or click on a link to cancel

the command and return to the main menu.

The HTML code for entering the book id is given below.

<form action="GOTO_WITH_BOOKID" method="post">

<table>

<tr>

<td align="right">Id:</td>

<td><input type="text" name="bookId"></td>

</tr>

<td>
<input type="submit" value="Enter Book Id"></td>

</tr>

</table>

</form>

In the normal course of action, the user would enter a book id and click the button

labelled Enter Book Id. Notice the lines

<form action="GOTO_WITH_BOOKID"

method="post"> in the HTML file and the line

htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "removebook");

in the servlet. The place holder GOTO_WITH_BOOKID is replaced by the URL

removebook. Therefore, when the user submits the form, the RemoveBook servlet is

initiated.

Issuing books

An ordinary member may self-issue a book or may ask a library staff member, a

superuser, to issue the book for himself/herself. In the former case, we need to skip

asking the member’s id and in the latter case, the system must present a screen for entering

the member id.

Like all other commands, the user clicks on a link to issue books; the HTML file

contains the lines

<td valign="top" width="160">

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 28

If

Issue book

</td>

The click on Issue bookcauses the servlet IssueBookInitializationto execute.

This servlet checks if the user is a superuser, and if so, a screen to accept the

member id is displayed; otherwise, the member to whom the book should be

issued is known and a screen to accept a book id is displayed.

The code is given below.

We now discuss how we remember the member for whom the book is to be issued.

The session object can store attributes and that commands such as issuing a book

and placing a hold are always carried out for a specific member.

That member’s id is stored in the attribute currentUserId.

the session was for an ordinary member, the value for this attribute is the

member’s id itself. Otherwise, when a superuser is logged in, the value changes

depending on the member for whom the command is being carried out; when the

command does not involve a member , the value of this attribute is the empty

string ("").

From the above discussion, clearly,

String memberId = getAttribute(request, "currentUserId");

would be the empty string if the user is a superuser and the logged-in-member’s id

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 29

otherwise.

The servlet IssueBookGetMemberId retrieves the id of the member to whom books
should be issued:

String memberId = request.getParameter("memberId");

If the member id is invalid, the HTML file consists of an error message and a form to

accept the member id. In this case, note that control will come back to the same servlet.

The IssueBookGetBookIdservlet gets the book id from the form, retrieves the value of

the attribute currentUserId to get the member id and calls the issueBook method of
Library.

The result is then used to replace the string RESULT in the commandCompleted
HTML file.

The result of invoking issueBookis stored in the string RESULT as has been the case for other

commands.

Renewing books

 The member id needs to be accepted if the user is a superuser; otherwise, that step can

be bypassed.

 To allow renewal, the title and due date all of the books checked out to the user must be

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 30

displayed.

 Also, for each book a checkbox needs to be shown, so the user can check it if he/she

wants the book to berenewed.

The HTML code, stored in the file renewBook.html, for this part of the process is

given below.

The type checkboxdenotes a checkbox control, which the user can click to indicate

that a book should be renewed.

The three strings, TITLE, DUE_DATE, and RENEW are placeholders for the

book title, book id, and the name of the checkbox control. T

The idea is that the above five lines of code will be replicated as many times as the

number of books checkedout.

The list of books must be assembled from two servlets: RenewBooks Initialization
if the user is an ordinary member and RenewBooksGet MemberId if the user is a
superuser.

Since the code to perform this task is a bit lengthy, it is extracted into LibraryServlet.

The code, given below,

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 31

First gets an iterator for the books checked out.
The HTML file is built up from the file renewBook.html
The strings TITLEand DUE_DATEare respectively replaced by the book’s title
and due date.
A unique name for the checkbox is generated by replacing the string RENEWby

the concatenation of renewand a counter that is incremented once per loop iteration.

The RenewBooksservlet must somehow discover the book id and other details of

the books that are to be renewed.

Also, we list the title and due date (possibly changed) of each book to be renewed

and a status message that says whether the book was renewed or not.

This demands that we remember the details of all the books in the order we

displayed them.

These are stored in the attributes bookId, title, and dueDate, each concatenated with

the value of the counter.

Also, the number of books displayed is also stored in the attribute numberOfBooks.

Logging in and logging out

When the class LibraryServlet is loaded, it reads the files PrivilegedUsers and
IPAddressesand copies the information to main memory.
When a user logs in, we have seen that control goes to the Login servlet.
It assembles the log in screen for display by the browser.
Assume now that the user types in a user id and password and sends them to the
server.
The Indexservlet reads in the user id and password and calls a method named
getMenu in the class MenuBuilder.

This class is responsible for checking the validity of the user and returning the
appropriate menu. The class MenuBuilder itself is not a servlet, so to utilise the

methods of LibraryServlet, it needs the reference to the Indexservlet.

To call some of these methods, MenuBuilder also needs the request object. For

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 32

uniformity, we also pass the response object, although it is not currently used.
The method thus has 5 parameters: a reference to the Index servlet, the request and
response objects, and the user-id andpassword.

First, the code checks if the user is a superuser by calling the method validate
SuperUser of LibraryServlet, and if so, the attribute userType is given the value
Privileged.
Otherwise, the LibraryServletclass’s validate OrdinaryMembermethod is called to
see if the user is a member of the library; in that case, the userType attribute is set
as Ordinary.

Also, note the use of the boolean variables privilegedand validated.
In the event of an invalid user- id–password combination, a null value is returned
to the Index servlet, which redisplays the log-in screen with an error message.

With a successful log-in, the method checks whether the terminal used is within
the library premises or outside.

The attribute locationreflects this assessment.
The currentUserIdis set to the user’s id for ordinary users and to the empty string

("") for privileged users.

Software Architecture and Design Patterns (18CS731)

7th Semester, Department of CSE Page : 33

The final step is to return the appropriate menu.

This is done bythe method getMenu that has three parameters.

The code assembles the HTML page by reading from four different files in

addition to the files for beginning and ending the page.

These meet the requirements we set forth under ‘Developing User Requirements’.

If the user has logged in from the library, the Issue Book command is inserted into

the menu.

For privileged users, commands such as Add and Remove Book are inserted.

Ordinary members always get to issue commands such as placing a hold and

removing a hold.

These commands are also available to superusers who log in from a library terminal.

Finally, the exit command is available to all users from anywhere.

	Design pattern
	Essential Elements:

	Describing Design Patterns
	The Catalog of Design Pattern
	Adapter:

	Organizing the Catalog
	How Design Patterns solve design problems
	 Finding Appropriate Objects
	2. Determining Object Granularity

	3. Specifying Object Interfaces
	Interface:
	Type:
	Dynamic Binding, Polymorphism Binding
	Polymorphism
	An object’s implementation is defined by its class
	Class inheritance
	Memento Pattern define two interfaces
	Decorator and Proxy patterns are used for interfaces of objects Visitor is used to reflect all classes of objects that visitors can visit

	Inheritance
	Abstract Class
	Concrete classes
	Override an operation
	Mixin Class
	Augmented class:

	5. Class versus Interface Inheritance
	6. Programming to an Interface, not an Implementation
	Benefits
	Instantiation of Concrete classes

	7. Putting Reuse Mechanisms to work
	 Delegation
	White-box reuse:
	Black-box reuse:
	Advantages
	Disadvantages
	Object composition:
	Delegation
	Inheritance versus Parameterized Types
	 For example :

	8. Relating Run-Time and Compile-Time Structures
	code structure
	Aggregation
	Acquaintance

	9. Designing for Change
	Common Causes of Redesign
	Design patterns in Application programs
	Design patterns in Toolkits
	Design patterns in Frameworks
	Differences between framework and design pattern
	1. Design patterns are more abstract than frameworks
	2. Design patterns are smaller architectural elements than frameworks
	3. Design patterns are less specialized than frameworks

	How to Select a Design Pattern
	Consider how design patterns solve design problems.
	Scan Intent sections
	Study how patterns interrelate
	Study patterns of like purpose
	Examine a cause of redesign.
	Consider what should be variable in your design.

	How to Use a Design Pattern
	1. Read overview of pattern
	3. Look at the Sample Code section to see a concrete example of the pattern in code
	5. Define the classes
	6. Define application-specific names for operations in the pattern
	7. Implement the operations to carry out the responsibilities and collaborations in the pattern

	What is Object-Oriented Development?
	First computers

	Key Concepts of Object-Oriented Design
	Encapsulation
	Cohesion and Coupling Cohesion
	Coupling
	Modifiability and Testability Modifiability
	Testability

	Benefits and Drawbacks of the Paradigm
	Advantages
	Drawbacks

	2.1 Overview of the Analysis Phase
	2.2 Stage 1: Gathering the Requirements
	Requirements can be classified into two categories:
	2.2.1 Case Study Introduction

	The business processes of the library system are listed below.
	2.3 Functional Requirements Specification
	Use case diagram for the library system
	Use case for adding books
	Use case for issuing books
	Use case Return Book
	Use case Removing Books
	Use case Member Transactions
	Use case Place a Hold and Remove a Hold
	Use case Process Holds
	Use case Renew Books
	Different Rules for the Library System
	Defining Conceptual Classes and Relationships
	UML Diagram
	Figure 2.2 UML diagram for the class library
	Figure 2.3 UML diagram for the class Member
	Figure 2.4 UML diagram showing the association of Library and Member
	Figure 2.5 UML diagram for the class Book
	Figure 2.7 UML diagram showing the association Borrows between Member and Book
	Figure 2.9 Conceptual classes and their associations
	2.4 Using the Knowledge of the Domain
	2.5 Design and Implementation
	Design
	Major subsystems
	Creating the Software Classes
	Member and Book
	Assigning Responsibilities to the Classes
	 Sequence diagrams
	Figure. 2.11 Sequence diagram for adding a new member
	Figure. 2.13 Sequence diagram for issuing books
	Figure. 2.15 Sequence diagram for removing books
	Figure.2.17 Sequence diagram for placing a hold
	Figure. 2.19 Sequence diagram for removing a holds
	2.6.1.1 Class Diagrams

	Class Diagram for Library
	Figure. 2.22 Class diagram for Library
	Figure. 2.23 Class diagram for Member
	Class Diagram for Catalog
	Figure.2.25 Class diagram for Catalog class Class Diagram for MemberList
	Class Diagram for Hold
	Class Diagram for Transaction
	User Interface

	Following commands in our UI
	2.6.2 Implementing Our Design
	Adding New Books
	Issuing Books
	Printing Transactions
	2.6.2.1 Placing and Processing Holds

	Java Serialization
	Storing the Data
	Dealing with Static Fields in Non-singletons
	2.6 Discussion and Further Reading
	 Conceptual, Software and Implementation Classes:
	Motivation:
	Participants:
	Collaborations:
	Sample code:
	Known Uses
	Related Patterns
	Motivation: (1)
	Sample Code
	Known Uses (1)
	Related Patterns (1)
	Motivation: (2)
	Known Uses (2)
	Related Patterns (2)
	Decorator Pattern
	Motivation
	For example:
	Applicability:
	Participants
	Sample Code
	Known Uses
	Related patterns:

	FAÇADE (Object Structure)
	Motivation
	Applicability:
	Structure
	Sample Code :
	Known Uses
	Related patterns:
	FLYWEIGHT (Object Structure)
	Motivation (1)
	Structure:
	Collaborations:
	Consequences:
	Sample Code
	Known Uses (1)
	Related patterns

	Proxy Pattern(Object Structure)
	Motivation
	Structure
	Collaborations
	Sample Code
	Known Uses
	Related patterns:

	Module 3 Behavioral Patterns
	Chain of Responsibility
	Intent
	Motivation
	Structure
	Participants
	 Client
	Collaborations
	Consequences
	Potential Drawbacks:
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Command
	Intent
	Also Known As
	Motivation
	Applicability
	 Parameterize objects to perform actions.
	 Support logging changes
	 Command
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns

	Interpreter
	Intent
	Motivation
	expression::= literal | alternation | sequence | repetition | '(' expression ')'
	literal::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*
	Applicability
	Participants
	 Context
	 Client
	Collaborations
	Consequences
	Implementation
	Sample Code
	expression ::= literal | alternation | sequence | repetition | '(' expression ')'
	literal ::= 'a' | 'b' | 'c' | ... { 'a' | 'b' | 'c' | ... }*
	(('dog ' | 'cat ') repeat & 'weather') matches the input string "dog dog cat weather".
	Known Uses
	Related Patterns
	Intent (1)
	Also Known As
	Motivation (1)
	Applicability (1)
	Structure
	 Iterator
	 ConcreteIterator
	 Aggregate
	 ConcreteAggregate
	Collaborations (1)
	Consequences (1)
	Implementation (1)
	6. A robust iterator ensures that insertions and removalswon't interfere with traversal, and it
	Sample Code (1)
	2. Iterator subclass implementations.ListIterator is a subclass of Iterator.
	Known Uses (1)
	Example:
	Related Patterns (1)
	Mediator Intent
	Motivation (2)
	Applicability (2)
	Structure (1)
	Participants (1)
	Collaborations (2)
	Consequences (2)
	Implementation (2)
	Sample Code (2)
	Known Uses (2)

	Memento
	Observer Intent
	Also Known As
	Motivation
	Applicability
	Structure
	 Subject
	 Observer
	 ConcreteSubject
	 ConcreteObserver
	Collaborations
	Consequences
	1. Abstract coupling between Subject and Observer
	3. Unexpected updates. Implementation
	Sample Code
	Known Uses
	Related Patterns
	Intent
	Applicability (1)
	Participants
	Collaborations (1)
	Consequences (1)
	Implementation
	Sample Code (1)
	Known Uses (1)
	Related Patterns (1)
	Strategy Intent
	Also Known As (1)
	Motivation (1)
	Applicability (2)
	Structure (1)
	Collaborations (2)
	Consequences (2)
	Implementation (1)
	Sample Code (2)
	Known Uses (2)
	Related Patterns (2)
	Template Method
	Intent
	Motivation
	Applicability
	Structure Participants
	Collaborations
	Consequences
	Implementation
	Sample Code
	Known Uses
	Related Patterns
	Intent (1)
	Motivation (1)
	Applicability (1)
	Structure Participants (1)
	Collaborations (1)
	Consequences (1)
	Implementation (1)
	2. Who is responsible for traversing the object structure?
	Sample Code (1)
	Known Uses (1)
	Related Patterns (1)

	4.1 Introduction
	4.2 The MVC Architectural Pattern
	The pattern separates the application object or the data, which is termed the Model, from the manner in which it is rendered to the end-user (View) and from the way in which the end-user manipulates it (Controller).
	4.2.3 Benefits of the MVC Pattern

	4.3 Analysing a Simple Drawing Program
	4.3.1 Specifying the Requirements
	4.3.2 Defining the Use Cases

	4.4 Designing the System
	4.4.1 Defining the Model
	4.4.2 Defining the Controller
	Drawing a Line
	Drawing a Circle
	Adding a Label
	Sharing Responsibilities between the View and the Controller

	4.4.3 Selection and Deletion
	4.4.4 Saving and Retrieving the Drawing

	4.5 Design of the Subsystems
	4.5.1 Design of the Model Subsystem
	4.5.2 Design of Item and Its Subclasses
	Catering to Multiple UI Technologies
	Using the Bridge Pattern

	4.5.3 Design of the Controller Subsystem
	4.5.4 Design of the View Subsystem

	4.6 Getting into the Implementation
	4.6.1 Item and Its Subclasses
	4.6.2 Implementation of the Model Class
	Implementation of the Controller Class
	Implementation of the View Class
	The Driver Program
	A Critique of Our Design

	Implementing the Undo Operation
	There are two obvious drawbacks with this approach:
	4.7.2 Implementation

	4.8 Drawing Incomplete Items
	Adding a New Feature
	Which Subsystem ‘Owns’ a Class?

	4.9 Pattern-Based Solutions
	Architectural patterns have the following characteristics:
	The Repository
	The Client-Server
	The Pipe and Filter

	Advantages
	Drawbacks
	5.1 Client server system
	1. Peer-to-Peer systems :
	2. Client-Server systems :
	5.1.1 Basic Architecture of Client/Server Systems
	For example,
	1. By using object-oriented support software:
	2. By avoiding direct use of remote objects by using the Hyper Text Transfer Protocol (HTTP).
	5.2 Java Remote Method Invocation
	5.2.1 Remote Interfaces
	5.2.2 Implementing a Remote Interface
	5.2.3 Creating the Server
	5.2.4 The Client
	5.2.5 Setting up the System
	5.3 Implementing an Object-Oriented System on the Web
	For example
	Entering and Processing Data
	Server-Side Code
	5.3.2 Deploying the Library System on the World-Wide Web
	Developing User Requirements
	Logging in and the Initial Menu
	Add Book
	Add Member, Return Book, Remove Book
	Save Data
	Issue Book
	State transition diagram for issuing books
	Design and Implementation
	Examples of HTML ﬁle fragment
	How to remember a user
	Conﬁguration
	Structure of servlets in the web-based library system
	Issuing books
	We now discuss how we remember the member for whom the book is to be issued.
	Renewing books
	Logging in and logging out

